
uucp.info

uucp.info ii

COLLABORATORS

TITLE :

uucp.info

ACTION NAME DATE SIGNATURE

WRITTEN BY August 7, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

uucp.info iii

Contents

1 uucp.info 1

1.1 uucp.info . 1

1.2 uucp.info/Copying . 8

1.3 uucp.info/Introduction . 9

1.4 uucp.info/Invoking the UUCP Programs . 13

1.5 uucp.info/Standard Options . 14

1.6 uucp.info/Invoking uucp . 15

1.7 uucp.info/uucp Description . 15

1.8 uucp.info/uucp Options . 16

1.9 uucp.info/Invoking uux . 18

1.10 uucp.info/uux Description . 18

1.11 uucp.info/uux Options . 19

1.12 uucp.info/uux Examples . 21

1.13 uucp.info/Invoking uustat . 21

1.14 uucp.info/uustat Description . 22

1.15 uucp.info/uustat Options . 22

1.16 uucp.info/uustat Examples . 25

1.17 uucp.info/Invoking uuname . 27

1.18 uucp.info/Invoking uulog . 27

1.19 uucp.info/Invoking uuto . 29

1.20 uucp.info/Invoking uupick . 29

1.21 uucp.info/Invoking cu . 30

1.22 uucp.info/cu Description . 31

1.23 uucp.info/cu Commands . 31

1.24 uucp.info/cu Variables . 33

1.25 uucp.info/cu Options . 34

1.26 uucp.info/Invoking uucico . 35

1.27 uucp.info/uucico Description . 36

1.28 uucp.info/uucico Options . 37

1.29 uucp.info/Invoking uuxqt . 39

uucp.info iv

1.30 uucp.info/Invoking uuchk . 40

1.31 uucp.info/Invoking uuconv . 40

1.32 uucp.info/Invoking uusched . 41

1.33 uucp.info/Installing Taylor UUCP . 41

1.34 uucp.info/Compilation . 42

1.35 uucp.info/Testing the Compilation . 44

1.36 uucp.info/Installing the Binaries . 46

1.37 uucp.info/Configuration . 46

1.38 uucp.info/Testing the Installation . 47

1.39 uucp.info/Using Taylor UUCP . 48

1.40 uucp.info/Calling Other Systems . 49

1.41 uucp.info/Accepting Calls . 50

1.42 uucp.info/Mail and News . 51

1.43 uucp.info/Sending mail or news . 51

1.44 uucp.info/Receiving mail or news . 52

1.45 uucp.info/The Spool Directory Layout . 52

1.46 uucp.info/System Spool Directories . 53

1.47 uucp.info/Status Directory . 54

1.48 uucp.info/Execution Subdirectories . 55

1.49 uucp.info/Other Spool Subdirectories . 56

1.50 uucp.info/Spool Lock Files . 57

1.51 uucp.info/Spool Directory Cleaning . 58

1.52 uucp.info/Configuration Files . 59

1.53 uucp.info/Configuration Overview . 60

1.54 uucp.info/Configuration File Format . 61

1.55 uucp.info/Configuration Examples . 61

1.56 uucp.info/config File Examples . 62

1.57 uucp.info/Leaf Example . 63

1.58 uucp.info/Gateway Example . 65

1.59 uucp.info/Time Strings . 67

1.60 uucp.info/Chat Scripts . 68

1.61 uucp.info/config File . 72

1.62 uucp.info/Miscellaneous (config) . 73

1.63 uucp.info/Configuration File Names . 75

1.64 uucp.info/Log File Names . 77

1.65 uucp.info/Debugging Levels . 78

1.66 uucp.info/sys File . 79

1.67 uucp.info/Defaults and Alternates . 80

1.68 uucp.info/Naming the System . 81

uucp.info v

1.69 uucp.info/Calling Out . 82

1.70 uucp.info/When to Call . 82

1.71 uucp.info/Placing the Call . 84

1.72 uucp.info/Logging In . 86

1.73 uucp.info/Accepting a Call . 87

1.74 uucp.info/Protocol Selection . 88

1.75 uucp.info/File Transfer Control . 94

1.76 uucp.info/Miscellaneous (sys) . 97

1.77 uucp.info/Default sys File Values . 98

1.78 uucp.info/port File . 98

1.79 uucp.info/dial File . 103

1.80 uucp.info/UUCP Over TCP . 106

1.81 uucp.info/TCP Client . 106

1.82 uucp.info/TCP Server . 107

1.83 uucp.info/Security . 108

1.84 uucp.info/Protocols . 109

1.85 uucp.info/UUCP Protocol Sources . 111

1.86 uucp.info/UUCP Grades . 112

1.87 uucp.info/UUCP Lock Files . 113

1.88 uucp.info/Execution File Format . 114

1.89 uucp.info/UUCP Protocol . 116

1.90 uucp.info/The Initial Handshake . 117

1.91 uucp.info/UUCP Protocol Commands . 120

1.92 uucp.info/The S Command . 121

1.93 uucp.info/The R Command . 124

1.94 uucp.info/The X Command . 126

1.95 uucp.info/The E Command . 126

1.96 uucp.info/The H Command . 128

1.97 uucp.info/The Final Handshake . 128

1.98 uucp.info/g Protocol . 128

1.99 uucp.info/f Protocol . 133

1.100uucp.info/t Protocol . 134

1.101uucp.info/e Protocol . 135

1.102uucp.info/Big G Protocol . 135

1.103uucp.info/i Protocol . 136

1.104uucp.info/j Protocol . 139

1.105uucp.info/x Protocol . 141

1.106uucp.info/y Protocol . 142

1.107uucp.info/d Protocol . 144

uucp.info vi

1.108uucp.info/h Protocol . 144

1.109uucp.info/v Protocol . 144

1.110uucp.info/Hacking . 144

1.111uucp.info/System Dependence . 145

1.112uucp.info/Naming Conventions . 145

1.113uucp.info/Patches . 147

1.114uucp.info/Acknowledgements . 148

1.115uucp.info/Index (concepts) . 153

1.116uucp.info/Index (configuration file) . 159

uucp.info 1 / 166

Chapter 1

uucp.info

1.1 uucp.info

Taylor UUCP 1.06

This is the documentation for the Taylor UUCP package, version 1.06.
The programs were written by Ian Lance Taylor. The author can be
reached at <ian@airs.com>, or at

Ian Lance Taylor
c/o Cygnus Support
48 Grove Street
Somerville, MA 02144
USA

There is a mailing list for discussion of the package. The list is
hosted by Eric Schnoebelen at cirr.com. To join (or get off) the list,
send mail to taylor-uucp-request@cirr.com. Mail to this address is
answered by the majordomo program. To join the list, send the message subscribe
ADDRESS where ADDRESS is your e-mail address. To send a
message to the list, send it to taylor-uucp@cirr.com. The old list
address, taylor-uucp@gnu.ai.mit.edu, will also work. There is an
archive of all messages sent to the mailing list at ftp.cirr.com.

Copying
Taylor UUCP Copying Conditions

Introduction
Introduction to Taylor UUCP

Invoking the UUCP Programs
Invoking the UUCP Programs

Installing Taylor UUCP
Installing Taylor UUCP

Using Taylor UUCP
Using Taylor UUCP

uucp.info 2 / 166

Configuration Files
Taylor UUCP Configuration Files

Protocols
UUCP Protocol Descriptions

Hacking
Hacking Taylor UUCP

Acknowledgements
Acknowledgements

Index (concepts)
Concept Index

Index (configuration file)
Index to New Configuration Files

-- The Detailed Node Listing --

Invoking the UUCP Programs

Standard Options
Standard Options for the UUCP Programs

Invoking uucp
Invoking uucp

Invoking uux
Invoking uux

Invoking uustat
Invoking uustat

Invoking uuname
Invoking uuname

Invoking uulog
Invoking uulog

Invoking uuto
Invoking uuto

Invoking uupick
Invoking uupick

Invoking cu
Invoking cu

Invoking uucico
Invoking uucico

Invoking uuxqt
Invoking uuxqt

uucp.info 3 / 166

Invoking uuchk
Invoking uuchk

Invoking uuconv
Invoking uuconv

Invoking uusched
Invoking uusched

Invoking uucp

uucp Description
Description of uucp

uucp Options
Options Supported by uucp

Invoking uux

uux Description
Description of uux

uux Options
Options Supported by uux

uux Examples
Examples of uux Usage

Invoking uustat

uustat Description
Description of uustat

uustat Options
Options Supported by uustat

uustat Examples
Examples of uustat Usage

Invoking cu

cu Description
Description of cu

cu Commands
Commands Supported by cu

cu Variables
Variables Supported by cu

cu Options
Options Supported by cu

uucp.info 4 / 166

Invoking uucico

uucico Description
Description of uucico

uucico Options
Options Supported by uucico

Installing Taylor UUCP

Compilation
Compiling Taylor UUCP

Testing the Compilation
Testing the Compilation

Installing the Binaries
Installing the Binaries

Configuration
Configuring Taylor UUCP

Testing the Installation
Testing the Installation

Using Taylor UUCP

Calling Other Systems
Calling Other Systems

Accepting Calls
Accepting Calls

Mail and News
Using UUCP for Mail and News

The Spool Directory Layout
The Spool Directory Layout

Spool Directory Cleaning
Cleaning the UUCP Spool Directory

Using UUCP for Mail and News.

Sending mail or news
Sending mail or news via UUCP

Receiving mail or news
Receiving mail or news via UUCP

The Spool Directory Layout

uucp.info 5 / 166

System Spool Directories
System Spool Directories

Status Directory
Status Spool Directory

Execution Subdirectories
Execution Spool Subdirectories

Other Spool Subdirectories
Other Spool Subdirectories

Spool Lock Files
Spool Directory Lock Files

Taylor UUCP Configuration Files

Configuration Overview
Configuration File Overview

Configuration File Format
Configuration File Format

Configuration Examples
Examples of Configuration Files

Time Strings
How to Write Time Strings

Chat Scripts
How to Write Chat Scripts

config File
The Main Configuration File

sys File
The System Configuration File

port File
The Port Configuration Files

dial File
The Dialer Configuration Files

UUCP Over TCP
UUCP Over TCP

Security
Security Issues

Examples of Configuration Files

config File Examples
Examples of the Main Configuration File

uucp.info 6 / 166

Leaf Example
Call a Single Remote Site

Gateway Example
The Gateway for Several Local Systems

The Main Configuration File

Miscellaneous (config)
Miscellaneous config File Commands

Configuration File Names
Using Different Configuration Files

Log File Names
Using Different Log Files

Debugging Levels
Debugging Levels

The System Configuration File

Defaults and Alternates
Using Defaults and Alternates

Naming the System
Naming the System

Calling Out
Calling Out

Accepting a Call
Accepting a Call

Protocol Selection
Protocol Selection

File Transfer Control
File Transfer Control

Miscellaneous (sys)
Miscellaneous sys File Commands

Default sys File Values
Default Values

Calling Out

When to Call
When to Call

Placing the Call
Placing the Call

uucp.info 7 / 166

Logging In
Logging In

UUCP Over TCP

TCP Client
Connecting to Another System Over TCP

TCP Server
Running a TCP Server

UUCP Protocol Internals

UUCP Protocol Sources
Sources for UUCP Protocol Information

UUCP Grades
UUCP Grades

UUCP Lock Files
UUCP Lock Files

Execution File Format
Execution File Format

UUCP Protocol
UUCP Protocol

g Protocol
g protocol

f Protocol
f protocol

t Protocol
t protocol

e Protocol
e protocol

Big G Protocol
G protocol

i Protocol
i protocol

j Protocol
j protocol

x Protocol
x protocol

y Protocol
y protocol

uucp.info 8 / 166

d Protocol
d protocol

h Protocol
h protocol

v Protocol
v protocol

UUCP Protocol

The Initial Handshake
The Initial Handshake

UUCP Protocol Commands
UUCP Protocol Commands

The Final Handshake
The Final Handshake

UUCP Protocol Commands

The S Command
The S Command

The R Command
The R Command

The X Command
The X Command

The E Command
The E Command

The H Command
The H Command

Hacking Taylor UUCP

System Dependence
System Dependence

Naming Conventions
Naming Conventions

Patches
Patches

1.2 uucp.info/Copying

uucp.info 9 / 166

Taylor UUCP Copying Conditions

This package is covered by the GNU Public License. See the file
COPYING for details. If you would like to do something with
this package that you feel is reasonable, but you feel is prohibited by
the license, contact me to see if we can work it out.

The rest of this section is some descriptive text from the Free
Software Foundation.

All the programs, scripts and documents relating to Taylor UUCP are
free; this means that everyone is free to use them and free to
redistribute them on a free basis. The Taylor UUCP-related programs are
not in the public domain; they are copyrighted and there are
restrictions on their distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do.
What is not allowed is to try to prevent others from further sharing any
version of these programs that they might get from you.

Specifically, we want to make sure that you have the right to give
away copies of the programs that relate to Taylor UUCP, that you receive
source code or else can get it if you want it, that you can change these
programs or use pieces of them in new free programs, and that you know
you can do these things.

To make sure that everyone has such rights, we have to forbid you to
deprive anyone else of these rights. For example, if you distribute
copies of the Taylor UUCP related programs, you must give the recipients
all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must tell them their
rights.

Also, for our own protection, we must make certain that everyone
finds out that there is no warranty for the programs that relate to
Taylor UUCP. If these programs are modified by someone else and passed
on, we want their recipients to know that what they have is not what we
distributed, so that any problems introduced by others will not reflect
on our reputation.

The precise conditions of the licenses for the programs currently
being distributed that relate to Taylor UUCP are found in the General
Public Licenses that accompany them.

1.3 uucp.info/Introduction

Introduction to Taylor UUCP

General introductions to UUCP are available, and perhaps one day I
will write one. In the meantime, here is a very brief one that
concentrates on the programs provided by Taylor UUCP.

uucp.info 10 / 166

Taylor UUCP is a complete UUCP package. It is covered by the GNU
Public License, which means that the source code is always available.
It is composed of several programs; most of the names of these programs
are based on earlier UUCP packages.

uucp
The uucp program is used to copy file between systems. It is
similar to the standard Unix cp program, except that you can refer
to a file on a remote system by using system! before the file
name. For example, to copy the file notes.txt to the system airs,
you would say uucp notes.txt airs!~/notes.txt. In this example ~
is used to name the UUCP public directory on airs. For more
details, see

uucp
.

uux
The uux program is used to request the execution of a program on a
remote system. This is how mail and news are transferred over
UUCP. As with uucp, programs and files on remote systems may be
named by using system!. For example, to run the rnews program on
airs, passing it standard input, you would say uux -
airs!rnews. The - means to read standard input and set things
up such that when rnews runs on airs it will receive the same
standard input. For more details, see

uux
.

Neither uucp nor uux actually do any work immediately. Instead,
they queue up requests for later processing. They then start a daemon
process which processes the requests and calls up the appropriate
systems. Normally the system will also start the daemon periodically to
check if there is any work to be done. The advantage of this approach
is that it all happens automatically. You don’t have to sit around
waiting for the files to be transferred. The disadvantage is that if
anything goes wrong it might be a while before anybody notices.

uustat
The uustat program does many things. By default it will simply
list all the jobs you have queued with uucp or uux that have not
yet been processed. You can use uustat to remove any of your jobs
from the queue. You can also it use it to show the status of the
UUCP system in various ways, such as showing the connection status
of all the remote systems your system knows about. The system
administrator can use uustat to automatically discard old jobs
while sending mail to the user who requested them. For more
details, see

uustat
.

uuname
The uuname program by default lists all the remote systems your
system knows about. You can also use it to get the name of your
local system. It is mostly useful for shell scripts. For more
details, see

uuname
.

uucp.info 11 / 166

uulog
The uulog program can be used to display entries in the UUCP log
file. It can select the entries for a particular system or a
particular user. You can use it to see what has happened to your
queued jobs in the past. For more details, see

uulog
.

uuto
uupick

uuto is a simple shell script interface to uucp. It will transfer
a file, or the contents of a directory, to a remote system, and
notify a particular user on the remote system when it arrives. The
remote user can then retrieve the file(s) with uupick. For more
details, see

uuto
, and see
uupick
.

cu
The cu program can be used to call up another system and
communicate with it as though you were directly connected. It can
also do simple file transfers, though it does not provide any
error checking. For more details,

cu
.

These eight programs just described, uucp, uux, uuto, uupick,
uustat, uuname, uulog, and cu are the user programs provided
by Taylor UUCP. uucp, uux, and uuto add requests to the work queue,
uupick extracts files from the UUCP public directory, uustat
examines the work queue, uuname examines the configuration files, uulog
examines the log files, and cu just uses the UUCP configuration files.

The real work is actually done by two daemon processes, which are
normally run automatically rather than by a user.

uucico
The uucico daemon is the program which actually calls the remote
system and transfers files and requests. uucico is normally
started automatically by uucp and uux. Most systems will also
start it periodically to make sure that all work requests are
handled. uucico checks the queue to see what work needs to be
done, and then calls the appropriate systems. If the call fails,
perhaps because the phone line is busy, uucico leaves the requests
in the queue and goes on to the next system to call. It is also
possible to force uucico to call a remote system even if there is
no work to be done for it, so that it can pick up any work that
may be queued up remotely. For more details, see

uucico
.

uuxqt
The uuxqt daemon processes execution requests made by the uux
program on remote systems. It also processes requests made on the

uucp.info 12 / 166

local system which require files from a remote system. It is
normally started by uucico. For more details, see

uuxqt
.

Suppose you, on the system bantam, want to copy a file to the system
airs. You would run the uucp command locally, with a command
like uucp notes.txt airs!~/notes.txt. This would queue up a request on
bantam for airs, and would then start the uucico daemon.
uucico would see that there was a request for airs and attempt
to call it. When the call succeeded, another copy of uucico would be
started on airs. The two copies of uucico would tell each other what
they had to do and transfer the file from bantam to airs. When the file
transfer was complete the uucico on airs would move it into the UUCP
public directory.

UUCP is often used to transfer mail. This is normally done
automatically by mailer programs. When bantam has a mail message to
send to ian at airs, it executes uux - airs!rmail ian and writes the
mail message to the uux process as standard input. The uux program,
running on bantam, will read the standard input and store it, as well
as the rmail request itself, on the work queue for airs. uux will then
start the uucico daemon. The uucico daemon will call up airs, just as
in the uucp example, and transfer the work request and the mail
message. The uucico daemon on airs will put the files on a local work
queue. When the communication session is over, the uucico daemon on
airs will start the uuxqt daemon. uuxqt will see the request
on the work queue, and will run rmail ian with the mail message as
standard input. The rmail program, which is not part of the UUCP
package, is then responsible for either putting the message in the
right mailbox on airs or forwarding the message on to another system.

Taylor UUCP comes with a few other programs that are useful when
installing and configuring UUCP.

uuchk
The uuchk program reads the UUCP configuration files and displays
a rather lengthy description of what it finds. This is useful when
configuring UUCP to make certain that the UUCP package will do
what you expect it to do. For more details, see

uuchk
.

uuconv
The uuconv program can be used to convert UUCP configuration files
from one format to another. This can be useful for administrators
converting from an older UUCP package. Taylor UUCP is able to
read and use old configuration file formats, but some new features
can not be selected using the old formats. For more details, see

uuconv
.

uusched
The uusched script is provided for compatibility with older UUCP
releases. It starts uucico to call, one at a time, all the
systems for which work has been queued. For more details, see

uucp.info 13 / 166

uusched
.

tstuu
The tstuu program is a test harness for the UUCP package; it can
help check that the package has been configured and compiled
correctly. However, it uses pseudo-terminals, which means that it
is less portable than the rest of the package. If it works, it
can be useful when initially installing Taylor UUCP. For more
details, see

tstuu
.

1.4 uucp.info/Invoking the UUCP Programs

Invoking the UUCP Programs

This chapter describes how to run the UUCP programs.

Standard Options
Standard Options for the UUCP Programs

Invoking uucp
Invoking uucp

Invoking uux
Invoking uux

Invoking uustat
Invoking uustat

Invoking uuname
Invoking uuname

Invoking uulog
Invoking uulog

Invoking uuto
Invoking uuto

Invoking uupick
Invoking uupick

Invoking cu
Invoking cu

Invoking uucico
Invoking uucico

uucp.info 14 / 166

Invoking uuxqt
Invoking uuxqt

Invoking uuchk
Invoking uuchk

Invoking uuconv
Invoking uuconv

Invoking uusched
Invoking uusched

1.5 uucp.info/Standard Options

Standard Options
================

All of the UUCP programs support a few standard options.

-x type
--debug type

Turn on particular debugging types. The following types are
recognized: abnormal, chat, handshake, uucp-proto, proto, port,
config, spooldir, execute, incoming, outgoing. Not all
types of debugging are effective for all programs. See the debug
configuration command for details (see

Debugging Levels
).

Multiple types may be given, separated by commas, and the --debug
option may appear multiple times. A number may also be given,
which will turn on that many types from the foregoing list; for
example, --debug 2 is equivalent to --debug abnormal,chat. To turn
on all types of debugging, use -x all.

The uulog program uses -X rather than -x to select the debugging
type; for uulog, -x has a different meaning, for reasons of
historical compatibility.

-I file
--config file

Set the main configuration file to use. See
config File
. When

this option is used, the programs will revoke any setuid
privileges.

-v
--version

Report version information and exit.

--help
Print a help message and exit.

uucp.info 15 / 166

1.6 uucp.info/Invoking uucp

Invoking uucp
=============

uucp Description
Description of uucp

uucp Options
Options Supported by uucp

1.7 uucp.info/uucp Description

uucp Description

uucp [options] source-file destination-file
uucp [options] source-file... destination-directory

The uucp command copies files between systems. Each file argument
is either a file name on the local machine or is of the form
system!file. The latter is interpreted as being on a remote
system.

When uucp is used with two non-option arguments, the contents of the
first file are copied to the second. With more than two non-option
arguments, each source file is copied into the destination directory.

A file may be transferred to or from system2 via system1 by using
system1!system2!file.

Any file name that does not begin with / or ~ will be prepended with
the current directory (unless the -W or --noexpand options are used).
For example, if you are in the directory /home/ian, then uucp foo
remote!bar is equivalent to uucp /home/ian/foo
remote!/home/ian/bar. Note that the resulting file name may not
be valid on a remote system.

A file name beginning with a simple ~ starts at the UUCP public
directory; a file name beginning with ~name starts at the home
directory of the named user. The ~ is interpreted on the appropriate
system. Note that some shells will interpret an initial ~ before uucp
sees it; to avoid this the ~ must be quoted.

The shell metacharacters ? * [and] are interpreted on the

uucp.info 16 / 166

appropriate system, assuming they are quoted to prevent the shell from
interpreting them first.

The file copy does not take place immediately, but is queued up for
the uucico daemon; the daemon is started immediately unless the -r or
--nouucico option is given. The next time the remote system
is called, the file(s) will be copied. See

Invoking uucico
.

The file mode is not preserved, except for the execute bit. The
resulting file is owned by the uucp user.

1.8 uucp.info/uucp Options

uucp Options

The following options may be given to uucp.

-c
--nocopy

Do not copy local source files to the spool directory. If they are
removed before being processed by the uucico daemon, the copy will
fail. The files must be readable by the uucico daemon, and by the
invoking user.

-C
--copy

Copy local source files to the spool directory. This is the
default.

-d
--directories

Create all necessary directories when doing the copy. This is the
default.

-f
--nodirectories

If any necessary directories do not exist for the destination file
name, abort the copy.

-R
--recursive

If any of the source file names are directories, copy their
contents recursively to the destination (which must itself be a
directory).

-g grade
--grade grade

Set the grade of the file transfer command. Jobs of a higher
grade are executed first. Grades run 0 to 9, A to Z, a to z, from
high to low. See

uucp.info 17 / 166

When to Call
.

-m
--mail

Report completion or failure of the file transfer by sending mail.

-n user
--notify user

Report completion or failure of the file transfer by sending mail
to the named user on the destination system.

-r
--nouucico

Do not start the uucico daemon immediately; merely queue up the
file transfer for later execution.

-j
--jobid

Print the jobid on standard output. The job may be later
cancelled by passing this jobid to the -kill switch of uustat.
See

Invoking uustat
.

It is possible for some complex operations to produce more than one
jobid, in which case each will be printed on a separate line. For
example

uucp sys1!~user1/file1 sys2!~user2/file2 ~user3
will generate two separate jobs, one for the system sys1 and one
for the system sys2.

-W
--noexpand

Do not prepend remote relative file names with the current
directory.

-t
--uuto

This option is used by the uuto shell script; see
Invoking uuto
.

It causes uucp to interpret the final argument as system!user.
The file(s) are sent to ~/receive/USER/LOCAL on the remote system,
where USER is from the final argument and LOCAL is the local UUCP
system name. Also, uucp will act as though --notify user were
specified.

-x type
--debug type
-I file
--config file
-v
--version
--help

See
Standard Options

uucp.info 18 / 166

.

1.9 uucp.info/Invoking uux

Invoking uux
============

uux Description
Description of uux

uux Options
Options Supported by uux

uux Examples
Examples of uux Usage

1.10 uucp.info/uux Description

uux Description

uux [options] command

The uux command is used to execute a command on a remote system, or
to execute a command on the local system using files from remote
systems. The command is not executed immediately; the request is queued
until the uucico daemon calls the system and transfers the necessary
files. The daemon is started automatically unless one of the -r or
--nouucico options is given.

The actual command execution is done by the uuxqt daemon on the
appropriate system.

File arguments can be gathered from remote systems to the execution
system, as can standard input. Standard output may be directed to a
file on a remote system.

The command name may be preceded by a system name followed by an
exclamation point if it is to be executed on a remote system. An empty
system name is taken as the local system.

Each argument that contains an exclamation point is treated as
naming a file. The system which the file is on is before the
exclamation point, and the file name on that system follows it. An
empty system name is taken as the local system; this form must be used
to transfer a file to a command being executed on a remote system. If

uucp.info 19 / 166

the file name is not absolute, the current working directory will be
prepended to it; the result may not be meaningful on the remote system.
A file name may begin with ~/, in which case it is relative to the
UUCP public directory on the appropriate system. A file name may begin
with ~name/, in which case it is relative to the home directory of the
named user on the appropriate system.

Standard input and output may be redirected as usual; the file names
used may contain exclamation points to indicate that they are on remote
systems. Note that the redirection characters must be quoted so that
they are passed to uux rather than interpreted by the shell. Append
redirection (>>) does not work.

All specified files are gathered together into a single directory
before execution of the command begins. This means that each file must
have a distinct name. For example,

uux ’sys1!diff sys2!~user1/foo sys3!~user2/foo >!foo.diff’
will fail because both files will be copied to sys1 and stored under

the name foo.

Arguments may be quoted by parentheses to avoid interpretation of
exclamation points. This is useful when executing the uucp command on
a remote system.

Most systems restrict the commands which may be executed using uux.
Many permit only the execution of rmail and rnews.

A request to execute an empty command (e.g., uux sys!) will create a
poll file for the specified system; see

Calling Other Systems
for an

example of why this might be useful.

1.11 uucp.info/uux Options

uux Options

The following options may be given to uux.

-
-p
--stdin

Read standard input up to end of file, and use it as the standard
input for the command to be executed.

-c
--nocopy

Do not copy local files to the spool directory. This is the
default. If they are removed before being processed by the uucico
daemon, the copy will fail. The files must be readable by the uucico
daemon, as well as the by the invoker of uux.

uucp.info 20 / 166

-C
--copy

Copy local files to the spool directory.

-l
--link

Link local files into the spool directory. If a file can not be
linked because it is on a different device, it will be copied
unless one of the -c or --nocopy options also appears (in other
words, use of --link switches the default from --nocopy to
--copy). If the files are changed before being processed
by the uucico daemon, the changed versions will be used. The
files must be readable by the uucico daemon, as well as by the
invoker of uux.

-g grade
--grade grade

Set the grade of the file transfer command. Jobs of a higher
grade are executed first. Grades run 0 to 9, A to Z, a to z, from
high to low. See

When to Call
.

-n
--notification=no

Do not send mail about the status of the job, even if it fails.

-z
--notification=error

Send mail about the status of the job if an error occurs. For many
uuxqt daemons, including the Taylor UUCP uuxqt, this is the
default action; for those, --notification=error will have no
effect. However, some uuxqt daemons will send mail if the job
succeeds, unless the --notification=error option is used. Some
other uuxqt daemons will not send mail even if the job fails,
unless the --notification=error option is used.

-a address
--requestor address

Report job status, as controlled by the --notification option, to
the specified mail address.

-r
--nouucico

Do not start the uucico daemon immediately; merely queue up the
execution request for later processing.

-j
--jobid

Print the jobid on standard output. A jobid will be generated for
each file copy operation required to execute the command. These
file copies may be later cancelled by passing the jobid to the
-kill switch of uustat. See

Invoking uustat
. Cancelling

any file copies will make it impossible to complete execution of
the job.

uucp.info 21 / 166

-x type
--debug type
-v
--version
--help

See
Standard Options
.

1.12 uucp.info/uux Examples

uux Examples

Here are some examples of using uux.

uux -z - sys1!rmail user1
This will execute the command rmail user1 on the system sys1, giving

it as standard input whatever is given to uux as standard input. If a
failure occurs, mail will be sent to the user who ran the command.

uux ’diff -c sys1!~user1/file1 sys2!~user2/file2 >!file.diff’
This will fetch the two named files from system sys1 and system sys2

and execute diff, putting the result in file.diff in the current
directory on the local system. The current directory must be writable
by the uuxqt daemon for this to work.

uux ’sys1!uucp ~user1/file1 (sys2!~user2/file2)’
Execute uucp on the system sys1 copying file1 (on system sys1) to

sys2. This illustrates the use of parentheses for quoting.

1.13 uucp.info/Invoking uustat

Invoking uustat
===============

uustat Description
Description of uustat

uustat Options
Options Supported by uustat

uustat Examples
Examples of uustat Usage

uucp.info 22 / 166

1.14 uucp.info/uustat Description

uustat Description

uustat -a
uustat --all
uustat [-eKRiMNQ] [-sS system] [-uU user] [-cC command] [-oy hours]

[-B lines] [--executions] [--kill-all] [--rejuvenate-all]
[--prompt] [--mail] [--notify] [--no-list] [--system system]
[--not-system system] [--user user] [--not-user user]
[--command command] [--not-command command] [--older-than hours]
[--younger-than hours] [--mail-lines lines]

uustat [-kr jobid] [--kill jobid] [--rejuvenate jobid]
uustat -q [-sS system] [-oy hours] [--system system]

[--not-system system] [--older-than hours] [--younger-than hours]
uustat --list [-sS system] [-oy hours] [--system system]

[--not-system system] [--older-than hours] [--younger-than hours]
uustat -m
uustat --status
uustat -p
uustat --ps

The uustat command can display various types of status information
about the UUCP system. It can also be used to cancel or rejuvenate
requests made by uucp or uux.

With no options, uustat displays all jobs queued up for the invoking
user, as if given the --user option with the appropriate argument.

If any of the -a, --all, -e, --executions, -s, --system, -S,
--not-system, -u, --user, -U, --not-user, -c, --command, -C,
--not-command, -o, --older-than, -y, or --younger-than options
are given, then all jobs which match the combined specifications are
displayed.

The -K or --kill-all option may be used to kill off a selected group
of jobs, such as all jobs more than 7 days old.

1.15 uucp.info/uustat Options

uustat Options

The following options may be given to uustat.

-a
--all

List all queued file transfer requests.

-e
--executions

List queued execution requests rather than queued file transfer

uucp.info 23 / 166

requests. Queued execution requests are processed by uuxqt rather
than uucico. Queued execution requests may be waiting for some
file to be transferred from a remote system. They are created by
an invocation of uux.

-s system
--system system

List all jobs queued up for the named system. These options may be
specified multiple times, in which case all jobs for all the named
systems will be listed. If used with --list, only the systems
named will be listed.

-S system
--not-system system

List all jobs queued for systems other than the one named. These
options may be specified multiple times, in which case no jobs
from any of the specified systems will be listed. If used with
--list, only the systems not named will be listed. These
options may not be used with -s or --system.

-u user
--user user

List all jobs queued up for the named user. These options may be
specified multiple times, in which case all jobs for all the named
users will be listed.

-U user
--not-user user

List all jobs queued up for users other than the one named. These
options may be specified multiple times, in which case no jobs
from any of the specified users will be listed. These options may
not be used with -u or --user.

-c command
--command command

List all jobs requesting the execution of the named command. If
command is ALL this will list all jobs requesting the
execution of some command (as opposed to simply requesting a file
transfer). These options may be specified multiple times, in
which case all jobs requesting any of the commands will be listed.

-C command
--not-command command

List all jobs requesting execution of some command other than the
named command, or, if command is ALL, list all jobs that simply
request a file transfer (as opposed to requesting the execution of
some command). These options may be specified multiple times, in
which case no job requesting one of the specified commands will be
listed. These options may not be used with -c or --command.

-o hours
--older-than hours

List all queued jobs older than the given number of hours. If
used with --list, only systems whose oldest job is older than the
given number of hours will be listed.

-y hours

uucp.info 24 / 166

--younger-than hours
List all queued jobs younger than the given number of hours. If
used with --list, only systems whose oldest job is younger than the
given number of hours will be listed.

-k jobid
--kill jobid

Kill the named job. The job id is shown by the default output
format, as well as by the -j or --jobid options to uucp or uux. A
job may only be killed by the user who created the job, or by the
UUCP administrator, or the superuser. The -k or --kill options
may be used multiple times on the command line to kill several
jobs.

-r jobid
--rejuvenate jobid

Rejuvenate the named job. This will mark it as having been
invoked at the current time, affecting the output of the -o,
--older-than, -y, or --younger-than options, possibly
preserving it from any automated cleanup daemon. The job id is
shown by the default output format, as well as by the -j or
--jobid options to uucp or uux. A job may only be
rejuvenated by the user who created the job, or by the UUCP
administrator, or the superuser. The -r or --rejuvenate options
may be used multiple times on the command line to rejuvenate
several jobs.

-q
--list

Display the status of commands, executions and conversations for
all remote systems for which commands or executions are queued.
The -s, --system, -S, --not-system, -o, --older-than, -y, and
--younger-than options may be used to restrict the
systems which are listed. Systems for which no commands or
executions are queued will never be listed.

-m
--status

Display the status of conversations for all remote systems.

-p
--ps

Display the status of all processes holding UUCP locks on systems
or ports.

-i
--prompt

For each listed job, prompt whether to kill the job or not. If the
first character of the input line is y or Y, the job will be
killed.

-K
--kill-all

Automatically kill each listed job. This can be useful for
automatic cleanup scripts, in conjunction with the --mail and
--notify options.

uucp.info 25 / 166

-R
--rejuvenate-all

Automatically rejuvenate each listed job. This may not be used
with --kill-all.

-M
--mail

For each listed job, send mail to the UUCP administrator. If the
job is killed (due to --kill-all, or --prompt with an affirmative
response) the mail will indicate that. A comment specified by the
--comment option may be included. If the job is an
execution, the initial portion of its standard input will be
included in the mail message; the number of lines to include may
be set with the --mail-lines option (the default is 100). If the
standard input contains null characters, it is assumed to be a
binary file and is not included.

-N
--notify

For each listed job, send mail to the user who requested the job.
The mail is identical to that sent by the -M or --mail options.

-W comment
--comment comment

Specify a comment to be included in mail sent with the -M, --mail,
-N, or --notify options.

-B lines
--mail-lines lines

When the -M, --mail, -N, or --notify options are used to send mail
about an execution with standard input, this option controls the
number of lines of standard input to include in the message. The
default is 100.

-Q
--no-list

Do not actually list the job, but only take any actions indicated
by the -i, --prompt, -K, --kill-all, -M, --mail, -N or --notify
options.

-x type
--debug type
-I file
--config file
-v
--version
--help

See
Standard Options
.

1.16 uucp.info/uustat Examples

uucp.info 26 / 166

uustat Examples

uustat --all
Display status of all jobs. A sample output line is as follows:

bugsA027h bugs ian 04-01 13:50 Executing rmail ian@airs.com (sending 12 bytes ←↩
)

The format is
jobid system user queue-date command (size)

The jobid may be passed to the --kill or --rejuvenate options. The
size indicates how much data is to be transferred to the remote system,
and is absent for a file receive request. The --system, --not-system,
--user, --not-user, --command, --not-command, --older-than, and
--younger-than options may be used to control which jobs are listed.

uustat --executions
Display status of queued up execution requests. A sample output line

is as follows:
bugs bugs!ian 05-20 12:51 rmail ian

The format is
system requestor queue-date command

The --system, --not-system, --user, --not-user, --command,
--not-command, --older-than, and --younger-than options may be
used to control which requests are listed.

uustat --list
Display status for all systems with queued up commands. A sample

output line is as follows:
bugs 4C (1 hour) 0X (0 secs) 04-01 14:45 Dial failed

This indicates the system, the number of queued commands, the age of
the oldest queued command, the number of queued local executions, the
age of the oldest queued execution, the date of the last conversation,
and the status of that conversation.

uustat --status
Display conversation status for all remote systems. A sample output

line is as follows:
bugs 04-01 15:51 Conversation complete

This indicates the system, the date of the last conversation, and the
status of that conversation. If the last conversation failed, uustat
will indicate how many attempts have been made to call the system. If
the retry period is currently preventing calls to that system, uustat
also displays the time when the next call will be permitted.

uustat --ps
Display the status of all processes holding UUCP locks. The output

format is system dependent, as uustat simply invokes ps on each process
holding a lock.

uustat -c rmail -o 168 -K -Q -M -N -W "Queued for over 1 week"
This will kill all rmail commands that have been queued up waiting

for delivery for over 1 week (168 hours). For each such command, mail
will be sent both to the UUCP administrator and to the user who
requested the rmail execution. The mail message sent will include the
string given by the -W option. The -Q option prevents any of the jobs
from being listed on the terminal, so any output from the program will

uucp.info 27 / 166

be error messages.

1.17 uucp.info/Invoking uuname

Invoking uuname
===============

uuname [-a] [--aliases]
uuname -l
uuname --local

By default, the uuname program simply lists the names of all the
remote systems mentioned in the UUCP configuration files.

The uuname program may also be used to print the UUCP name of the
local system.

The uuname program is mainly for use by shell scripts.

The following options may be given to uuname.

-a
--aliases

List all aliases for remote systems, as well as their canonical
names. Aliases may be specified in the sys file (see

Naming the System
).

-l
--local

Print the UUCP name of the local system, rather than listing the
names of all the remote systems.

-x type
--debug type
-I file
--config file
-v
--version
--help

See
Standard Options
.

1.18 uucp.info/Invoking uulog

Invoking uulog
==============

uucp.info 28 / 166

uulog [-#] [-n lines] [-sf system] [-u user] [-DSF] [--lines lines]
[--system system] [--user user] [--debuglog] [--statslog]
[--follow] [--follow=system]

The uulog program may be used to display the UUCP log file.
Different options may be used to select which parts of the file to
display.

-#
-n lines
--lines lines

Here # is a number; e.g., -10. The specified number of lines is
displayed from the end of the log file. The default is to display
the entire log file, unless the -f, -F, or --follow options are
used, in which case the default is to display 10 lines.

-s system
--system system

Display only log entries pertaining to the specified system.

-u user
--user user

Display only log entries pertaining to the specified user.

-D
--debuglog

Display the debugging log file.

-S
--statslog

Display the statistics log file.

-F
--follow

Keep displaying the log file forever, printing new lines as they
are appended to the log file.

-f system
--follow=system

Keep displaying the log file forever, displaying only log entries
pertaining to the specified system.

-X type
--debug type
-I file
--config file
-v
--version
--help

See
Standard Options
. Note that uulog specifies the debugging

type using -X rather than the usual -x.

The operation of uulog depends to some degree upon the type of log
files generated by the UUCP programs. This is a compile time option.

uucp.info 29 / 166

If the UUCP programs have been compiled to use HDB style log files,
uulog changes in the following ways:

* The new options -x and --uuxqtlog may be used to list the uuxqt
log file.

* It is no longer possible to omit all arguments: one of -s,
--system, -f, --follow=system, -D, --debuglog, -S,
--statslog, -x, or --uuxqtlog must be used.

* The option --system ANY may be used to list log file entries which
do not pertain to any particular system.

1.19 uucp.info/Invoking uuto

Invoking uuto
=============

uuto files... system!user

The uuto program may be used to conveniently send files to a
particular user on a remote system. It will arrange for mail to be sent
to the remote user when the files arrive on the remote system, and he or
she may easily retrieve the files using the uupick program (see

Invoking uupick
). Note that uuto does not provide any security--any

user on the remote system can examine the files.

The last argument specifies the system and user name to which to send
the files. The other arguments are the files or directories to be sent.

The uuto program is actually just a trivial shell script which
invokes the uucp program with the appropriate arguments. Any option
which may be given to uucp may also be given to uuto. See

Invoking uucp
.

1.20 uucp.info/Invoking uupick

Invoking uupick
===============

uupick [-s system] [--system system]

The uupick program is used to conveniently retrieve files
transferred by the uuto program.

uucp.info 30 / 166

For each file transferred by uuto, uupick will display the source
system, the file name, and whether the name refers to a regular file or
a directory. It will then wait for the user to specify an action to
take. One of the following commands must be entered:

q
Quit out of uupick.

RETURN
Skip the file.

m [directory]
Move the file or directory to the specified directory. If no
directory is specified, the file is moved to the current directory.

a [directory]
Move all files from this system to the specified directory. If no
directory is specified, the files are moved to the current
directory.

p
List the file on standard output.

d
Delete the file.

! [command]
Execute command as a shell escape.

The -s or --system option may be used to restrict uupick to only
present files transferred from a particular system. The uupick program
also supports the standard UUCP program options; see

Standard Options
.

1.21 uucp.info/Invoking cu

Invoking cu
===========

cu Description
Description of cu

cu Commands
Commands Supported by cu

cu Variables
Variables Supported by cu

cu Options

uucp.info 31 / 166

Options Supported by cu

1.22 uucp.info/cu Description

cu Description

cu [options] [system | phone | "dir"]

The cu program is used to call up another system and act as a dial
in terminal. It can also do simple file transfers with no error
checking.

The cu program takes a single non-option argument.

If the argument is the string dir cu will make a direct connection
to the port. This may only be used by users with write access to the
port, as it permits reprogramming the modem.

Otherwise, if the argument begins with a digit, it is taken to be a
phone number to call.

Otherwise, it is taken to be the name of a system to call.

The -z or --system options may be used to name a system beginning
with a digit, and the -c or --phone options may be used to name a phone
number that does not begin with a digit.

The cu program locates a port to use in the UUCP configuration
files. If a simple system name is given, it will select a port
appropriate for that system. The -p, --port, -l, --line, -s, and
--speed options may be used to control the port selection.

When a connection is made to the remote system, cu forks into two
processes. One reads from the port and writes to the terminal, while
the other reads from the terminal and writes to the port.

1.23 uucp.info/cu Commands

cu Commands

The cu program provides several commands that may be used during the
conversation. The commands all begin with an escape character, which
by default is ~ (tilde). The escape character is only recognized at
the beginning of a line. To send an escape character to the remote
system at the start of a line, it must be entered twice. All commands
are either a single character or a word beginning with % (percent sign).

uucp.info 32 / 166

The cu program recognizes the following commands.

~.
Terminate the conversation.

~! command
Run command in a shell. If command is empty, starts up a shell.

~$ command
Run command, sending the standard output to the remote system.

~| command
Run command, taking the standard input from the remote system.

~+ command
Run command, taking the standard input from the remote system and
sending the standard output to the remote system.

~#, ~%break
Send a break signal, if possible.

~c directory, ~%cd directory
Change the local directory.

~> file
Send a file to the remote system. This just dumps the file over
the communication line. It is assumed that the remote system is
expecting it.

~<
Receive a file from the remote system. This prompts for the local
file name and for the remote command to execute to begin the file
transfer. It continues accepting data until the contents of the eofread
variable are seen.

~p from to
~%put from to

Send a file to a remote Unix system. This runs the appropriate
commands on the remote system.

~t from to
~%take from to

Retrieve a file from a remote Unix system. This runs the
appropriate commands on the remote system.

~s variable value
Set a cu variable to the given value. If value is not given, the
variable is set to true.

~! variable
Set a cu variable to false.

~z
Suspend the cu session. This is only supported on some systems.
On systems for which ^Z may be used to suspend a job, ~^Z will
also suspend the session.

uucp.info 33 / 166

~%nostop
Turn off XON/XOFF handling.

~%stop
Turn on XON/XOFF handling.

~v
List all the variables and their values.

~?
List all commands.

1.24 uucp.info/cu Variables

cu Variables

The cu program also supports several variables. They may be listed
with the ~v command, and set with the ~s or ~! commands.

escape
The escape character. The default is ~ (tilde).

delay
If this variable is true, cu will delay for a second, after
recognizing the escape character, before printing the name of the
local system. The default is true.

eol
The list of characters which are considered to finish a line. The
escape character is only recognized after one of these is seen.
The default is carriage return, ^U, ^C, ^O, ^D, ^S, ^Q, ^R.

binary
Whether to transfer binary data when sending a file. If this is
false, then newlines in the file being sent are converted to
carriage returns. The default is false.

binary-prefix
A string used before sending a binary character in a file
transfer, if the binary variable is true. The default is ^V.

echo-check
Whether to check file transfers by examining what the remote system
echoes back. This probably doesn’t work very well. The default is
false.

echonl
The character to look for after sending each line in a file. The
default is carriage return.

timeout
The timeout to use, in seconds, when looking for a character,
either when doing echo checking or when looking for the echonl

uucp.info 34 / 166

character. The default is 30.

kill
The character to use delete a line if the echo check fails. The
default is ^U.

resend
The number of times to resend a line if the echo check continues to
fail. The default is 10.

eofwrite
The string to write after sending a file with the ~> command. The
default is ^D.

eofread
The string to look for when receiving a file with the ~< command.
The default is $, which is intended to be a typical shell prompt.

verbose
Whether to print accumulated information during a file transfer.
The default is true.

1.25 uucp.info/cu Options

cu Options

The following options may be given to cu.

-e
--parity=even

Use even parity.

-o
--parity=odd

Use odd parity.

--parity=none
Use no parity. No parity is also used if both -e and -o are given.

-h
--halfduplex

Echo characters locally (half-duplex mode).

--nostop
Turn off XON/XOFF handling (it is on by default).

-E char
--escape char

Set the escape character. Initially ~ (tilde). To eliminate the
escape character, use -E ’’.

-z system
--system system

uucp.info 35 / 166

The system to call.

-c phone-number
--phone phone-number

The phone number to call.

-p port
-a port
--port port

Name the port to use.

-l line
--line line

Name the line to use by giving a device name. This may be used to
dial out on ports that are not listed in the UUCP configuration
files. Write access to the device is required.

-s speed
-#
--speed speed

The speed (baud rate) to use. Here, -# means an actual number;
e.g., -9600.

-n
--prompt

Prompt for the phone number to use.

-d
Enter debugging mode. Equivalent to --debug all.

-x type
--debug type
-I file
--config file
-v
--version
--help

See
Standard Options
.

1.26 uucp.info/Invoking uucico

Invoking uucico
===============

uucico Description
Description of uucico

uucico Options
Options Supported by uucico

uucp.info 36 / 166

1.27 uucp.info/uucico Description

uucico Description

uucico [options]

The uucico daemon processes file transfer requests queued by uucp
and uux. It is started when uucp or uux is run (unless they are given
the -r or --nouucico options). It is also typically started
periodically using entries in the crontab table(s).

When uucico is invoked with -r1, --master, -s, --system, or -S, the
daemon will place a call to a remote system, running in master mode.
Otherwise the daemon will start in slave mode, accepting a call from a
remote system. Typically a special login name will be set up for UUCP
which automatically invokes uucico when a remote system calls in and
logs in under that name.

When uucico terminates, it invokes the uuxqt daemon, unless the -q
or --nouuxqt options were given; uuxqt executes any work orders created
by uux on a remote system, and any work orders created locally which
have received remote files for which they were waiting.

If a call fails, uucico will normally refuse to retry the call until
a certain (configurable) amount of time has passed. This may be
overriden by the -f, --force, or -S options.

The -l, --prompt, -e, or --loop options may be used to force uucico
to produce its own prompts of login: and Password:. When another
uucico daemon calls in, it will see these prompts and log in
as usual. The login name and password will normally be checked against
a separate list kept specially for uucico, rather than the /etc/passwd
file (see

Configuration File Names
). It is possible, on some systems,

to configure uucico to use /etc/passwd. The -l or --prompt options
will prompt once and then exit; in this mode the UUCP administrator, or
the superuser, may use the -u or --login option to force a login name,
in which case uucico will not prompt for one. The -e or --loop options
will prompt again after the first session is over; in this mode uucico
will permanently control a port.

If uucico receives a SIGQUIT, SIGTERM or SIGPIPE signal, it will
cleanly abort any current conversation with a remote system and exit.
If it receives a SIGHUP signal it will abort any current conversation,
but will continue to place calls to (if invoked with -r1 or --master)
and accept calls from (if invoked with -e or --loop) other systems. If
it receives a SIGINT signal it will finish the current conversation,
but will not place or accept any more calls.

uucp.info 37 / 166

1.28 uucp.info/uucico Options

uucico Options

The following options may be given to uucico.

-r1
--master

Start in master mode: call out to a remote system. Implied by -s,
--system, or -S. If no system is specified, sequentially
call every system for which work is waiting to be done.

-r0
--slave

Start in slave mode. This is the default.

-s system
--system system

Call the specified system.

-S system
Call the specified system, ignoring any required wait. This is
equivalent to -s system -f.

-f
--force

Ignore any required wait for any systems to be called.

-l
--prompt

Prompt for login name and password using login: and Password:.
This allows uucico to be easily run from inetd. The login name
and password are checked against the UUCP password file, which
need not be /etc/passwd. The --login option may be used to force
a login name, in which cause uucico will only prompt for a
password.

-p port
--port port

Specify a port to call out on or to listen to.

-e
--loop

Enter an endless loop of login/password prompts and slave mode
daemon execution. The program will not stop by itself; you must
use kill to shut it down.

-w
--wait

After calling out (to a particular system when -s, --system, or -S
is specifed, or to all systems which have work when just -r1 or
--master is specifed), begin an endless loop as with

uucp.info 38 / 166

--loop.

-q
--nouuxqt

Do not start the uuxqt daemon when finished.

-c
--quiet

If no calls are permitted at this time, then don’t make the call,
but also do not put an error message in the log file and do not
update the system status (as reported by uustat). This can be
convenient for automated polling scripts, which may want to simply
attempt to call every system rather than worry about which
particular systems may be called at the moment. This option also
suppresses the log message indicating that there is no work to be
done.

-C
--ifwork

Only call the system named by -s, --system, or -S if there is work
for that system.

-D
--nodetach

Do not detach from the controlling terminal. Normally uucico
detaches from the terminal before each call out to another system
and before invoking uuxqt. This option prevents this.

-u name
--login name

Set the login name to use instead of that of the invoking user.
This option may only be used by the UUCP administrator or the
superuser. If used with --prompt, this will cause uucico to
prompt only for the password, not the login name.

-z
--try-next

If a call fails after the remote system is reached, try the next
alternate rather than simply exiting.

-i type
--stdin type

Set the type of port to use when using standard input. The only
supported port type is TLI, and this is only available on machines
which support the TLI networking interface. Specifying -i TLI
causes uucico to use TLI calls to perform I/O.

-X type
Same as the standard option -x type. Provided for historical
compatibility.

-x type
--debug type
-I file
--config file
-v
--version

uucp.info 39 / 166

--help
See

Standard Options
.

1.29 uucp.info/Invoking uuxqt

Invoking uuxqt
==============

uuxqt [-c command] [-s system] [--command command] [--system system]

The uuxqt daemon executes commands requested by uux from either the
local system or from remote systems. It is started automatically by
the uucico daemon (unless uucico is given the -q or --nouuxqt options).

There is normally no need to run uuxqt, since it will be invoked by
uucico. However, uuxqt can be invoked directly to provide
greater control over the processing of the work queue.

Multiple invocations of uuxqt may be run at once, as controlled by
the max-uuxqts configuration command; see

Miscellaneous (config)
.

The following options may be given to uuxqt.

-c command
--command command

Only execute requests for the specified command. For example, uuxqt -- ←↩
command

rmail.

-s system
--system system

Only execute requests originating from the specified system.

-x type
--debug type
-I file
--config
-v
--version
--help

See
Standard Options
.

uucp.info 40 / 166

1.30 uucp.info/Invoking uuchk

Invoking uuchk
==============

uuchk [-s system] [--system system]

The uuchk program displays information read from the UUCP
configuration files. It should be used to ensure that UUCP has been
configured correctly.

The -s or --system options may be used to display the configuration
for just the specified system, rather than for all systems. The uuchk
program also supports the standard UUCP program options; see

Standard Options
.

1.31 uucp.info/Invoking uuconv

Invoking uuconv
===============

uuconv -i type -o type [-p program] [--program program]
uuconv --input type --output type [-p program] [--program program]

The uuconv program converts UUCP configuration files from one format
to another. The type of configuration file to read is specified using
the -i or --input options. The type of configuration file to write is
specified using the -o or --output options.

The supported configuration file types are taylor, v2, and hdb. For
a description of the taylor configuration files, see

Configuration Files
. The other types of configuration files are used

by traditional UUCP packages, and are not described in this manual.

An input configuration of type v2 or hdb is read from a compiled in
directory (specified by oldconfigdir in Makefile). An input
configuration of type taylor is read from a compiled in directory by
default, but may be overridden with the standard -I or --config options
(see

Standard Options
).

The output configuration is written to files in the directory in
which uuconv is run.

Some information in the input files may not be representable in the
desired output format, in which case uuconv will silently discard it.
The output of uuconv should be carefully checked before it is used.

uucp.info 41 / 166

The uuchk program may be used for this purpose; see
Invoking uuchk
.

The -p or --program option may be used to convert specific cu
configuration information, rather than the default of only converting
the uucp configuration information; see

config File
.

The uuchk program also supports the standard UUCP program options;
see

Standard Options
.

1.32 uucp.info/Invoking uusched

Invoking uusched
================

The uusched program is actually just a shell script which invokes
the uucico daemon. It is provided for backward compatibility. It
causes uucico to call all systems for which there is work. Any option
which may be given to uucico may also be given to uusched. See

Invoking uucico
.

1.33 uucp.info/Installing Taylor UUCP

Installing Taylor UUCP

These are the installation instructions for the Taylor UUCP package.

Compilation
Compiling Taylor UUCP

Testing the Compilation
Testing the Compilation

Installing the Binaries
Installing the Binaries

Configuration
Configuring Taylor UUCP

uucp.info 42 / 166

Testing the Installation
Testing the Installation

1.34 uucp.info/Compilation

Compiling Taylor UUCP
=====================

If you have a source code distribution, you must first compile it for
your system. Free versions of Unix, such as Linux, NetBSD, or FreeBSD,
often come with pre-compiled binary distributions of UUCP. If you are
using a binary distribution, you may skip to the configuration section
(see

Configuration
).

Follow these steps to compile the source code.

1. Take a look at the top of Makefile.in and set the appropriate
values for your system. These control where the programs are
installed and which user on the system owns them (normally they
will be owned by a special user uucp rather than a real person;
they should probably not be owned by root).

2. Run the shell script configure. This script was generated using
the autoconf program written by David MacKenzie of the Free
Software Foundation. It takes a while to run. It will generate
the file config.h based on config.h.in, and, for each source code
directory, will generate Makefile based on Makefile.in.

You can pass certain arguments to configure in the environment.
Because configure will compile little test programs to see what is
available on your system, you must tell it how to run your
compiler. It recognizes the following environment variables:

CC
The C compiler. If this is not set, then if configure can
find gcc it will use it, otherwise it will use cc.

CFLAGS
Flags to pass to the C compiler when compiling the actual
code. If this is not set, configure will use -g.

LDFLAGS
Flags to pass to the C compiler when only linking, not
compiling. If this is not set, configure will use the empty
string.

LIBS
Libraries to pass to the C compiler. If this is not set,
configure will use the empty string.

uucp.info 43 / 166

INSTALL
The program to run to install UUCP in the binary directory.
If this is not set, then if configure finds the BSD install
program, it will set this to install -c; otherwise, it will
use cp.

Suppose, for example, you want to set the environment variable CC
to rcc. If you are using sh, bash, or ksh, invoke configure as CC=rcc
configure. If you are using csh, do setenv CC rcc; sh
configure.

On some systems you will want to use LIBS=-lmalloc. On Xenix
derived versions of Unix do not use LIBS=-lx because this will
bring in the wrong versions of certain routines; if you want to use
-lx you must specify LIBS=-lc -lx.

If configure fails for some reason, or if you have a very weird
system, you may have to configure the package by hand. To do
this, copy the file config.h.in to config.h and edit it for your
system. Then for each source directory (the top directory, and the
subdirectories lib, unix, and uuconf) copy Makefile.in to
Makefile, find the words within @ characters, and set
them correctly for your system.

3. Igor V. Semenyuk provided this (lightly edited) note about ISC
Unix 3.0. The configure script will default to passing -posix to
gcc. However, using -posix changes the environment to
POSIX, and on ISC 3.0, at least, the default for POSIX_NO_TRUNC is
1. This can lead to a problem when uuxqt executes rmail. IDA
sendmail has dbm configuration files named
mailertable.{dir,pag}. Notice these names are 15
characters long. When uuxqt compiled with the -posix executes
rmail, which in turn executes sendmail, the later is run
under the POSIX environment too. This leads to sendmail bombing
out with ’error opening ’M’ database: name too long’
(mailertable.dir). It’s rather obscure behaviour, and it
took me a day to find out the cause. I don’t use the -posix
switch; instead, I run gcc with -D_POSIX_SOURCE, and add -lcposix
to LIBS.

4. On some versions of BSDI there is a bug in the shell which causes
the default value for CFLAGS to be set incorrectly. If echo
${CFLAGS--g} echoes g rather than -g, then you must set
CFLAGS in the environment before running configure.
There is a patch available from BSDI for this bug. (Reported by
David Vrona).

5. On AIX 3.2.5, and possibly other versions, cc -E does not work,
reporting Option NOROCONST is not valid. Test this before running
configure by doing something like touch /tmp/foo.c; cc -E
/tmp/foo.c. This may give a warning about the file being
empty, but it should not give the Option NOROCONST warning. The
workaround is to remove the ,noroconst entry from the options
clause in the cc stanza in /etc/xlc.cfg. (Reported by Chris
Lewis).

6. You should verify that configure worked correctly by checking

uucp.info 44 / 166

config.h and the instances of Makefile.

7. Edit policy.h for your local system. The comments explain the
various choices. The default values are intended to be
reasonable, so you may not have to make any changes.

You must decide what type of configuration files to use; for more
information on the choices, see

Configuration
.

You must also decide what sort of spool directory you want to use.
If this is a new installation, I recommend SPOOLDIR_TAYLOR;
otherwise, select the spool directory corresponding to your
existing UUCP package.

8. Type make to compile everything.

The tstuu.c file is not particularly portable; if you can’t figure
out how to compile it you can safely ignore it, as it is only used
for testing. To use STREAMS pseudo-terminals, tstuu.c must be
compiled with -DHAVE_STREAMS_PTYS; this is not determined by the
configure script.

If you have any other problems there is probably a bug in the
configure script.

9. Please report any problems you have. That is the only way they
will get fixed for other people. Supply a patch if you can (see

Patches
), or just ask for help.

1.35 uucp.info/Testing the Compilation

Testing the Compilation
=======================

If your system supports pseudo-terminals, and you compiled the code
to support the new style of configuration files (HAVE_TAYLOR_CONFIG was
set to 1 in policy.h), you should be able to use the tstuu program to
test the uucico daemon. If your system supports STREAMS based
pseudo-terminals, you must compile tstuu.c with -DHAVE_STREAMS_PTYS.
(The STREAMS based code was contributed by Marc Boucher).

To run tstuu, just type tstuu with no arguments. You must run it in
the compilation directory, since it runs ./uucp, ./uux and ./uucico.
The tstuu program will run a lengthy series of tests (it takes over ten
minutes on a slow VAX). You will need a fair amount of space available
in /usr/tmp. You will probably want to put it in the background. Do
not use ^Z, because the program traps on SIGCHLD and winds up dying.
The tstuu program will create a directory /usr/tmp/tstuu and fill it

uucp.info 45 / 166

with configuration files, and create spool directories
/usr/tmp/tstuu/spool1 and /usr/tmp/tstuu/spool2.

If your system does not support the FIONREAD call, the tstuu program
will run very slowly. This may or may not get fixed in a later version.

The tstuu program will finish with an execute file named X.SOMETHING
and a data file named D.SOMETHING in the directory
/usr/tmp/tstuu/spool1 (or, more likely, in subdirectories,
depending on the choice of SPOOLDIR in policy.h). Two log files will
be created in the directory /usr/tmp/tstuu. They will be named Log1
and Log2, or, if you have selected HAVE_HDB_LOGGING in policy.h,
Log1/uucico/test2 and Log2/uucico/test1. There should be no
errors in the log files.

You can test uuxqt with ./uuxqt -I /usr/tmp/tstuu/Config1. This
should leave a command file C.SOMETHING and a data file D.SOMETHING in
/usr/tmp/tstuu/spool1 or in subdirectories. Again, there
should be no errors in the log file.

Assuming you compiled the code with debugging enabled, the -x switch
can be used to set debugging modes; see the debug command for details
(see

Debugging Levels
). Use -x all to turn on all debugging and

generate far more output than you will ever want to see. The uucico
daemons will put debugging output in the files Debug1 and Debug2 in the
directory /usr/tmp/tstuu. After that, you’re pretty much on your own.

On some systems you can also use tstuu to test uucico against the
system uucico, by using the -u switch. For this to work, change the
definitions of ZUUCICO_CMD and UUCICO_EXECL at the top of tstuu.c to
something appropriate for your system. The definitions in tstuu.c are
what I used for Ultrix 4.0, on which /usr/lib/uucp/uucico is
particularly obstinate about being run as a child; I was only able to
run it by creating a login name with no password whose shell was
/usr/lib/uucp/uucico. Calling login in this way will leave
fake entries in wtmp and utmp; if you compile tstout.c (in the contrib
directory) as a setuid root program, tstuu will run it to clear those
entries out. On most systems, such hackery should not be necessary,
although on SCO I had to su to root (uucp might also have worked)
before I could run /usr/lib/uucp/uucico.

You can test uucp and uux (give them the -r switch to keep them from
starting uucico) to make sure they create the right sorts of files.
Unfortunately, if you don’t know what the right sorts of files are, I’m
not going to tell you here.

If you can not run tstuu, or if it fails inexplicably, don’t worry
about it too much. On some systems tstuu will fail because of problems
using pseudo terminals, which will not matter in normal use. The real
test of the package is talking to another system.

uucp.info 46 / 166

1.36 uucp.info/Installing the Binaries

Installing the Binaries
=======================

You can install the executable files by becoming root and typing make
install. Or you can look at what make install does and do it by
hand. It tries to preserve your old programs, if any, but it only does
this the first time Taylor UUCP is installed (so that if you install
several versions of Taylor UUCP, you can still go back to your original
UUCP programs). You can retrieve the original programs by typing make
uninstall.

Note that by default the programs are compiled with debugging
information, and they are not stripped when they are installed. You may
want to strip the installed programs to save disk space. For more
information, see your system documentation for the strip program.

Of course, simply installing the executable files is not enough. You
must also arrange for them to be used correctly.

1.37 uucp.info/Configuration

Configuring Taylor UUCP
=======================

You will have to decide what types of configuration files you want to
use. This package supports a new sort of configuration file; see

Configuration Files
. It also supports V2 configuration files (L.sys,

L-devices, etc.) and HDB configuration files (Systems,
Devices, etc.). No documentation is provided for V2 or HDB
configuration files. All types of configuration files can be used at
once, if you are so inclined. Currently using just V2 configuration
files is not really possible, because there is no way to specify a
dialer (there are no built in dialers, and the program does not know
how to read acucap or modemcap); however, V2 configuration files can be
used with a new style dial file (see

dial File
), or with a HDB Dialers

file.

Use of HDB configuration files has two known bugs. A blank line in
the middle of an entry in the Permissions file will not be ignored as
it should be. Dialer programs, as found in some versions of HDB, are
not recognized directly. If you must use a dialer program, rather than
an entry in Devices, you must use the chat-program command in a new
style dial file; see

dial File
. You will have to invoke the dialer

program via a shell script or another program, since an exit code of 0
is required to recognize success; the dialHDB program in the contrib

uucp.info 47 / 166

directory may be used for this purpose.

The uuconv (see
Invoking uuconv
) program can be used to convert from

V2 or HDB configuration files to the new style (it can also do the
reverse translation, if you are so inclined). It will not do all of
the work, and the results should be carefully checked, but it can be
quite useful.

If you are installing a new system, you will, of course, have to
write the configuration files; see

Configuration Files
for details on

how to do this.

After writing the configuration files, use the uuchk program to
verify that they are what you expect; see

Invoking uuchk
.

1.38 uucp.info/Testing the Installation

Testing the Installation
========================

After you have written the configuration files, and verified them
with the uuchk program (see

Invoking uuchk
), you must check that UUCP

can correctly contact another system.

Tell uucico to dial out to the system by using the -s system switch
(e.g., uucico -s uunet). The log file should tell you what happens.
The exact location of the log file depends upon the settings in
policy.h when you compiled the program, and on the use of the
logfile command in the config file. Typical locations are
/usr/spool/uucp/Log or a subdirectory under
/usr/spool/uucp/.Log.

If you compiled the code with debugging enabled, you can use
debugging mode to get a great deal of information about what sort of
data is flowing back and forth; the various possibilities are described
with the debug command (see

Debugging Levels
). When initially setting

up a connection -x chat is probably the most useful (e.g., uucico -s uunet -x
chat); you may also want to use -x handshake,incoming,outgoing.
You can use -x multiple times on one command line, or you can give it
comma separated arguments as in the last example. Use -x all to turn
on all possible debugging information.

The debugging information is written to a file, normally

uucp.info 48 / 166

/usr/spool/uucp/Debug, although the default can be changed in
policy.h, and the config file can override the default with
the debugfile command. The debugging file may contain passwords and
some file contents as they are transmitted over the line, so the
debugging file is only readable by the uucp user.

You can use the -f switch to force uucico to call out even if the
last call failed recently; using -S when naming a system has the same
effect. Otherwise the status file (in the .Status subdirectory of the
main spool directory, normally /usr/spool/uucp) (see

Status Directory
)

will prevent too many attempts from occurring in rapid succession.

On older System V based systems which do not have the setreuid
system call, problems may arise if ordinary users can start an execution
of uuxqt, perhaps indirectly via uucp or uux. UUCP jobs may wind up
executing with a real user ID of the user who invoked uuxqt, which can
cause problems if the UUCP job checks the real user ID for security
purposes. On such systems, it is safest to put run-uuxqt never (see

Miscellaneous (config)
) in the config file, so that uucico never starts

uuxqt, and invoke uuxqt directly from a crontab file.

Please let me know about any problems you have and how you got around
them. If you do report a problem, please include the version number of
the package you are using, the operating system you are running it on,
and a sample of the debugging file showing the problem (debugging
information is usually what is needed, not just the log file). General
questions such as "why doesn’t uucico dial out" are impossible to
answer without much more information.

1.39 uucp.info/Using Taylor UUCP

Using Taylor UUCP

Calling Other Systems
Calling Other Systems

Accepting Calls
Accepting Calls

Mail and News
Using UUCP for Mail and News

The Spool Directory Layout
The Spool Directory Layout

Spool Directory Cleaning

uucp.info 49 / 166

Cleaning the UUCP Spool Directory

1.40 uucp.info/Calling Other Systems

Calling Other Systems
=====================

By default uucp and uux will automatically start up uucico to call
another system whenever work is queued up. However, the call may fail,
or you may have put in time restrictions which prevent the call at that
time (perhaps because telephone rates are high) (see

When to Call
).

Also, a remote system may have work queued up for your system, but may
not be calling you for some reason (perhaps you have agreed that your
system should always place the call). To make sure that work gets
transferred between the systems withing a reasonable time period, you
should arrange to periodically invoke uucico.

These periodic invocations are normally triggered by entries in the
crontab file. The exact format of crontab files, and how new
entries are added, varies from system to system; check your local
documentation (try man cron).

To attempt to call all systems with outstanding work, use the command
uucico -r1. To attempt to call a particular system, use the
command uucico -s SYSTEM. To attempt to call a particular system, but
only if there is work for it, use the command uucico -C -s SYSTEM.
(see

Invoking uucico
).

A common case is to want to try to call a system at a certain time,
with periodic retries if the call fails. A simple way to do this is to
create an empty UUCP command file, known as a poll file. If a poll
file exists for a system, then uucico -r1 will place a call to it. If
the call succeeds, the poll file will be deleted.

A poll file can be easily created using the uux command, by
requesting the execution of an empty command. To create a poll file for
SYSTEM, just do something like this:

uux -r SYSTEM!
The -r tells uux to not start up uucico immediately. Of course, if

you do want uucico to start up right away, omit the -r; if the call
fails, the poll file will be left around to cause a later call.

For example, I use the following crontab entries locally:

45 * * * * /bin/echo /usr/lib/uucp/uucico -r1 | /bin/su uucpa
40 4,10,15 * * * /usr/bin/uux -r uunet!

Every hour, at 45 minutes past, this will check if there is any work
to be done, and, if there is, will call the appropriate system. Also,

uucp.info 50 / 166

at 4:40am, 10:40am, and 3:40pm, this will create a poll file file for
uunet, forcing the next run of uucico to call uunet.

1.41 uucp.info/Accepting Calls

Accepting Calls
===============

To accept calls from another system, you must arrange matters such
that when that system calls in, it automatically invokes uucico on your
system.

The most common arrangement is to create a special user name and
password for incoming UUCP calls. This user name typically uses the
same user ID as the regular uucp user (Unix permits several user names
to share the same user ID). The shell for this user name should be set
to uucico.

Here is a sample /etc/passwd line to accept calls from a remote
system named airs:

Uairs:PASSWORD:4:8:airs UUCP:/usr/spool/uucp:/usr/lib/uucp/uucico
The details may vary on your system. You must use reasonable user

and group ID’s. You must use the correct file name for uucico. The
PASSWORD must appear in the UUCP configuration files on the
remote system, but will otherwise never be seen or typed by a human.

Note that uucico appears as the login shell, and that it will be run
with no arguments. This means that it will start in slave mode and
accept an incoming connection. See

Invoking uucico
.

On some systems, creating an empty file named .hushlogin in the home
directory will skip the printing of various bits of information when
the remote uucico logs in, speeding up the UUCP connection process.

For the greatest security, each system which calls in should use a
different user name, each with a different password, and the
called-login command should be used in the sys file to ensure
that the correct login name is used. See

Accepting a Call
, and see

Security
.

If you never need to dial out from your system, but only accept
incoming calls, you can arrange for uucico to handle logins itself,
completely controlling the port, by using the --endless option. See

Invoking uucico
.

uucp.info 51 / 166

1.42 uucp.info/Mail and News

Using UUCP for Mail and News.
=============================

Taylor UUCP does not include a mail package. All Unix systems come
with some sort of mail delivery agent, typically sendmail or MMDF.
Source code is available for some alternative mail delivery agents,
such as IDA sendmail and smail.

Taylor UUCP also does not include a news package. The two major Unix
news packages are C-news and INN. Both are available in source code
form.

Configuring and using mail delivery agents is a notoriously complex
topic, and I will not be discussing it here. Configuring news systems
is usually simpler, but I will not be discussing that either. I will
merely describe the interactions between the mail and news systems and
UUCP.

A mail or news system interacts with UUCP in two ways: sending and
receiving.

Sending mail or news
Sending mail or news via UUCP

Receiving mail or news
Receiving mail or news via UUCP

1.43 uucp.info/Sending mail or news

Sending mail or news via UUCP

When mail is to be sent from your machine to another machine via
UUCP, the mail delivery agent will invoke uux. It will generally run a
command such as uux - SYSTEM!rmail ADDRESS, where SYSTEM is the remote
system to which the mail is being sent. It may pass other options to
uux, such as -r or -g (see

Invoking uux
).

The news system also invokes uux in order to transfer articles to
another system. The only difference is that news will use uux to
invoke rnews on the remote system, rather than rmail.

uucp.info 52 / 166

You should arrange for your mail and news systems to invoke the
Taylor UUCP version of uux. If you only have Taylor UUCP, or if you
simply replace any existing version of uux with the Taylor UUCP
version, this will probably happen automatically. However, if you have
two UUCP packages installed on your system, you will probably have to
modify the mail and news configuration files in some way.

Actually, if both the system UUCP and Taylor UUCP are using the same
spool directory format, the system uux will probably work fine with the
Taylor uucico (the reverse is not the case: the Taylor uux requires the
Taylor uucico). However, data transfer will be somewhat more efficient
if the Taylor uux is used.

1.44 uucp.info/Receiving mail or news

Receiving mail or news via UUCP

To receive mail, all that is necessary is for UUCP to invoke rmail.
Any mail delivery agent will provide an appropriate version of rmail;
you must simply make sure that it is in the command path used by UUCP
(it almost certainly already is). The default command path is set in
policy.h, and it may be overridden for a particular system by
the command-path command (see

Miscellaneous (sys)
).

Similarly, for news UUCP must be able to invoke rnews. Any news
system will provide a version of rnews, and you must ensure that is in
a directory on the path that UUCP will search.

1.45 uucp.info/The Spool Directory Layout

The Spool Directory Layout
==========================

In general, the layout of the spool directory may be safely ignored.
However, it is documented here for the curious. This description only
covers the SPOOLDIR_TAYLOR layout. The ways in which the other spool
directory layouts differ are described in the source file unix/spool.c.

Directories and files are only created when they are needed, so a
typical system will not have all of the entries described here.

System Spool Directories
System Spool Directories

uucp.info 53 / 166

Status Directory
Status Spool Directory

Execution Subdirectories
Execution Spool Subdirectories

Other Spool Subdirectories
Other Spool Subdirectories

Spool Lock Files
Spool Directory Lock Files

1.46 uucp.info/System Spool Directories

System Spool Directories

SYSTEM
There is a subdirectory of the main spool directory for each remote
system.

SYSTEM/C.
This directory stores files describing file transfer commands to
be sent to the SYSTEM. Each file name starts with C.G, where G is
the job grade. Each file contains one or more commands. For
details of the commands, see

UUCP Protocol Commands
.

SYSTEM/D.
This directory stores data files. Files with names like D.G SSSS,
where G is the grade and SSSS is a sequence number, are waiting to
be transferred to the SYSTEM, as directed by the files in the
SYSTEM/C. directory. Files with other names,
typically D.SYSTEM G SSSS, have been received from SYSTEM and are
waiting to be processed by an execution file in the SYSTEM/X.
directory.

SYSTEM/D.X
This directory stores data files which will become execution files
on the remote system. In current practice, this directory rarely
exists, because most simple executions, including typical uses of rmail
and rnews, send an E command rather than an execution file (see

The E Command
).

SYSTEM/X.
This directory stores execution files which have been received from
SYSTEM. This directory normally exists, even though the
corresponding D.X directory does not, because uucico will create
an execution file on the fly when it receives an E command.

uucp.info 54 / 166

SYSTEM/SEQF
This file holds the sequence number of the last job sent to
SYSTEM. The sequence number is used to ensure that file
names are unique in the remote system spool directory. The file
is four bytes long. Sequence numbers are composed of digits and
the upper case letters.

1.47 uucp.info/Status Directory

Status Directory

.Status
This directory holds status files for each remote system. The
name of the status file is the name of the system which it
describes. Each status file describes the last conversation with
the system. Running uustat --status basically just formats and
prints the contents of the status files (see

uustat Examples
).

Each status file has a single text line with six fields.

code
A code indicating the status of the last conversation. The
following values are defined, though not all are actually
used.
0

Conversation completed normally.

1
uucico was unable to open the port.

2
The last call to the system failed while dailing.

3
The last call to the system failed while logging in.

4
The last call to the system failed during the initial
UUCP protocol handshake (see
The Initial Handshake
).

5
The last call to the system failed after the initial
handshake.

6
uucico is currently talking to the system.

uucp.info 55 / 166

7
The last call to the system failed because it was the
wrong time to call (this is not used if calling the
system is never permitted).

retries
The number of retries since the last successful call.

time of last call
The time of the last call, in seconds since the epoch (as
returned by the time system call).

wait
If the last call failed, this is the number of seconds since
the last call before uucico may attempt another call. This
is set based on the retry time; see

When to Call
. The -f or -S

options to uucico direct it to ignore this wait time; see

Invoking uucico
.

description
A text description of the status, corresponding to the code
in the first field. This may contain spaces.

system name
The name of the remote system.

1.48 uucp.info/Execution Subdirectories

Execution Subdirectories

.Xqtdir
When uuxqt executes a job requested by uux, it first changes the
working directory to the .Xqtdir subdirectory. This permits the
job to create any sort of temporary file without worrying about
overwriting other files in the spool directory. Any files left in
the .Xqtdir subdirectory are removed after each execution is
complete.

.XqtdirNNNN
When several instances of uuxqt are executing simultaneously, each
one executes jobs in a separate directory. The first uses
.Xqtdir, the second uses .Xqtdir0001, the third uses
.Xqtdir0002, and so forth.

.Corrupt
If uuxqt encounters an execution file which it is unable to parse,
it saves it in the .Corrupt directory, and sends mail about it to
the UUCP administrator.

uucp.info 56 / 166

.Failed
If uuxqt executes a job, and the job fails, and there is enough
disk space to hold the command file and all the data files, then
uuxqt saves the files in the .Failed directory, and sends
mail about it to the UUCP administrator.

1.49 uucp.info/Other Spool Subdirectories

Other Spool Subdirectories

.Sequence
This directory holds conversation sequence number files. These
are used if the sequence command is used for a system (see

Miscellaneous (sys)
). The sequence number for the system SYSTEM

is stored in the file .Sequence/SYSTEM. It is simply stored as a
printable number.

.Temp
This directory holds data files as they are being received from a
remote system, before they are moved to their final destination.
For file send requests which use a valid temporary file name in
the TEMP field of the S or E command (see

The S Command
), uucico

receives the file into .Temp/SYSTEM/TEMP, where SYSTEM is the name
of the remote system, and TEMP is the temporary file name. If a
conversation fails during a file transfer, these files are used to
automatically restart the file transfer from the point of failure.

If the S or E command does not include a temporary file name,
automatic restart is not possible. In this case, the files are
received into a randomly named file in the .Temp directory itself.

.Preserve
This directory holds data files which could not be transferred to a
remote system for some reason (for example, the data file might be
large, and exceed size restrictions imposed by the remote system).
When a locally requested file transfer fails, uucico will store
the data file in the .Preserve directory, and send mail to the
requestor describing the failure and naming the saved file.

.Received
This directory records which files have been received. If a
conversation fails just after uucico acknowledges receipt of a
file, it is possible for the acknowledgement to be lost. If this
happens, the remote system will resend the file. If the file were
an execution request, and uucico did not keep track of which files
it had already received, this could lead to the execution being
performed twice.

uucp.info 57 / 166

To avoid this problem, when a conversation fails, uucico records
each file that has been received, but for which the remote system
may not have received the acknowledgement. It records this
information by creating an empty file with the name
.Received/SYSTEM/TEMP, where SYSTEM is
the name of the remote system, and TEMP is the TEMP field of the S
or E command from the remote system (see

The S Command
). Then, if

the remote system offers the file again in the next conversation,
uucico refuses the send request and deletes the record in
the .Received directory. This approach only works for file sends
which use a temporary file name, but this is true of all execution
requests.

1.50 uucp.info/Spool Lock Files

Lock Files in the Spool Directory

Lock files for devices and systems are stored in the lock directory,
which may or may not be the same as the spool directory. The lock
directory is set at compilation time by LOCKDIR in policy.h, which may
be overridden by the lockdir command in the config file (see

Miscellaneous (config)
).

For a description of the names used for device lock files, and the
format of the contents of a lock file, see

UUCP Lock Files
.

LCK..SYS
A lock file for a system, where SYS is the system name. As noted
above, these lock files are kept in the lock directory, which may
not be the spool directory. These lock files are created by uucico
while talking to a remote system, and are used to prevent multiple
simultaneous conversations with a system.

On systems which limit file names to 14 characters, only the first
eight characters of the system name are used in the lock file
name. This requires that the names of each directly connected
remote system be unique in the first eight characters.

LCK.XQT.NN
When uuxqt starts up, it uses lock files to determine how many
other uuxqt daemons are currently running. It first tries to lock
LCK.XQT.0, then LCK.XQT.1, and so forth. This is used to
implement the max-uuxqts command (see

Miscellaneous (config)
). It

is also used to parcel out the .Xqtdir subdirectories (see

uucp.info 58 / 166

Execution Subdirectories
).

LXQ.CMD
When uuxqt is invoked with the -c or --command option (see

Invoking uuxqt
), it creates a lock file named after the command it

is executing. For example, uuxqt -c rmail will create the lock
file LXQ.rmail. This prevents other uuxqt daemons from executing
jobs of the specified type.

SYSTEM/X./L.XXX
While uuxqt is executing a particular job, it creates a lock file
with the same name as the X. file describing the job, but
replacing the initial X with L. This ensures that if multiple
uuxqt daemons are running, they do not simultaneously
execute the same job.

LCK..SEQ
This lock file is used to control access to the sequence files for
each system (see

System Spool Directories
). It is only used on

systems which do not support POSIX file locking using the fcntl
system call.

1.51 uucp.info/Spool Directory Cleaning

Cleaning the Spool Directory
============================

The spool directory may need to be cleaned up periodically. Under
some circumstances, files may accumulate in various subdirectories,
such as .Preserve (see

Other Spool Subdirectories
) or .Corrupt (see

Execution Subdirectories
).

Also, if a remote system stops calling in, you may want to arrange
for any queued up mail to be returned to the sender. This can be done
using the uustat command (see

Invoking uustat
).

The contrib directory includes a simple uuclean script which may be
used as an example of a clean up script. It can be run daily out of
crontab.

You should periodically trim the UUCP log files, as they will

uucp.info 59 / 166

otherwise grow without limit. The names of the log files are set in
policy.h, and may be overridden in the configuration file (see

config File
). By default they are are /usr/spool/uucp/Log and

/usr/spool/uucp/Stats. You may find the savelog program in
the contrib directory to be of use. There is a manual page for it in
contrib as well.

1.52 uucp.info/Configuration Files

Taylor UUCP Configuration Files

This chapter describes the configuration files accepted by the Taylor
UUCP package if compiled with HAVE_TAYLOR_CONFIG set to 1 in policy.h.

The configuration files are normally found in the directory
NEWCONFIGDIR, which is defined by the Makefile variable
newconfigdir; by default NEWCONFIGDIR is /usr/local/conf/uucp.
However, the main configuration file, config, is the only one which
must be in that directory, since it may specify a different location
for any or all of the other files. You may run any of the UUCP
programs with a different main configuration file by using the -I or
--config option; this can be useful when testing a new
configuration. When you use the -I option the programs will revoke any
setuid privileges.

Configuration Overview
Configuration File Overview

Configuration File Format
Configuration File Format

Configuration Examples
Examples of Configuration Files

Time Strings
How to Write Time Strings

Chat Scripts
How to Write Chat Scripts

config File
The Main Configuration File

sys File
The System Configuration File

port File
The Port Configuration Files

uucp.info 60 / 166

dial File
The Dialer Configuration Files

UUCP Over TCP
UUCP Over TCP

Security
Security Issues

1.53 uucp.info/Configuration Overview

Configuration File Overview
===========================

UUCP uses several different types of configuration files, each
describing a different kind of information. The commands permitted in
each file are described in detail below. This section is a brief
description of some of the different types of files.

The config file is the main configuration file. It describes
general information not associated with a particular remote system, such
as the location of various log files. There are reasonable defaults for
everything that may be specified in the config file, so you may not
actually need one on your system.

There may be only one config file, but there may be one or more of
each other type of file. The default is one file for each type, but
more may be listed in the config file.

The sys files are used to describe remote systems. Each remote
system to which you connect must be listed in a sys file. A sys file
will include information for a system, such as the speed (baud rate) to
use, or when to place calls.

For each system you wish to call, you must describe one or more
ports; these ports may be defined directly in the sys file, or they may
be defined in a port file.

The port files are used to describe ports. A port is a particular
hardware connection on your computer. You would normally define as
many ports as there are modems attached to your computer. A TCP
connection is also described using a port.

The dial files are used to describe dialers. Dialer is essentially
another word for modem. The dial file describes the commands UUCP
should use to dial out on a particular type of modem. You would
normally define as many dialers as there are types of modems attached
to your computer. For example, if you have three Telebit modems used
for UUCP, you would probably define three ports and one dialer.

There are other types of configuration files, but these are the
important ones. The other types are described below.

uucp.info 61 / 166

1.54 uucp.info/Configuration File Format

Configuration File Format
=========================

All the configuration files follow a simple line-oriented KEYWORD
VALUE format. Empty lines are ignored, as are leading
spaces; unlike HDB, lines with leading spaces are read. The first word
on each line is a keyword. The rest of the line is interpreted
according to the keyword. Most keywords are followed by numbers,
boolean values or simple strings with no embedded spaces.

The # character is used for comments. Everything from a # to the
end of the line is ignored unless the # is preceded by a \
(backslash); if the # is preceeded by a \ , the \ is removed but the #
remains in the line. This can be useful for a phone number containing
a #. To enter the sequence \#, use \\#.

The backslash character may be used to continue lines. If the last
character in a line is a backslash, the backslash is removed and the
line is continued by the next line. The second line is attached to the
first with no intervening characters; if you want any whitespace between
the end of the first line and the start of the second line, you must
insert it yourself.

However, the backslash is not a general quoting character. For
example, you cannot use it to get an embedded space in a string
argument.

Everything after the keyword must be on the same line. A BOOLEAN
may be specified as y, Y, t, or T for true and n, N, f, or F for false;
any trailing characters are ignored, so true, false, etc., are also
acceptable.

1.55 uucp.info/Configuration Examples

Examples of Configuration Files
===============================

This section provides few typical examples of configuration files.
There are also sample configuration files in the sample subdirectory of
the distribution.

config File Examples
Examples of the Main Configuration File

Leaf Example

uucp.info 62 / 166

Call a Single Remote Site

Gateway Example
The Gateway for Several Local Systems

1.56 uucp.info/config File Examples

config File Examples

To start with, here are some examples of uses of the main
configuration file, config. For a complete description of the commands
that are permitted in config, see

config File
.

In many cases you will not need to create a config file at all. The
most common reason to create one is to give your machine a special UUCP
name. Other reasons might be to change the UUCP spool directory, or to
permit any remote system to call in.

If you have an internal network of machines, then it is likely that
the internal name of your UUCP machine is not the name you want to use
when calling other systems. For example, here at airs.com our
mail/news gateway machine is named elmer.airs.com (it is one of several
machines all named LOCALNAME.airs.com). If we did not provide a config
file, then our UUCP name would be elmer; however, we actually want it
to be airs. Therefore, we use the following line in config:

nodename airs

The UUCP spool directory name is set in policy.h when the code is
compiled. You might at some point decide that it is appropriate to move
the spool directory, perhaps to put it on a different disk partition.
You would use the following commands in config to change to directories
on the partition /uucp:

spool /uucp/spool
pubdir /uucp/uucppublic
logfile /uucp/spool/Log
debugfile /uucp/spool/Debug

You would then move the contents of the current spool directory to
/uucp/spool. If you do this, make sure that no UUCP processes
are running while you change config and move the spool directory.

Suppose you wanted to permit any system to call in to your system and
request files. This is generally known as anonymous UUCP, since the
systems which call in are effectively anonymous. By default, unknown
systems are not permitted to call in. To permit this you must use the
unknown command in config. The unknown command is followed by
any command that may appear in the system file; for full details, see

uucp.info 63 / 166

sys File
.

I will show two possible anonymous UUCP configurations. The first
will let any system call in and download files, but will not permit
them to upload files to your system.

No files may be transferred to this system
unknown receive-request no
The public directory is /usr/spool/anonymous
unknown pubdir /usr/spool/anonymous
Only files in the public directory may be sent (the default anyhow)
unknown remote-send ~

Setting the public directory is convenient for the systems which call
in. It permits to request a file by prefixing it with ~/. For
example, assuming your system is known as server, then to retrieve the
file /usr/spool/anonymous/INDEX a user on a remote site could just
enter uucp server!~/INDEX ~; this would transfer INDEX from server’s
public directory to the user’s local public directory. Note that when
using csh or bash the ! and the second ~ must be quoted.

The next example will permit remote systems to upload files to a
special directory named /usr/spool/anonymous/upload. Permitting a
remote system to upload files permits it to send work requests as well;
this example is careful to prohibit commands from unknown systems.

No commands may be executed (the list of permitted commands is empty)
unknown commands
The public directory is /usr/spool/anonymous
unknown pubdir /usr/spool/anonymous
Only files in the public directory may be sent; users may not download
files from the upload directory
unknown remote-send ~ !~/upload
May only upload files into /usr/spool/anonymous/upload
unknown remote-receive ~/upload

1.57 uucp.info/Leaf Example

Leaf Example

A relatively common simple case is a leaf site, a system which only
calls or is called by a single remote site. Here is a typical sys file
that might be used in such a case. For full details on what commands
can appear in the sys file, see

sys File
.

This is the sys file that is used at airs.com. We use a single
modem to dial out to uunet. This example shows how you can specify the
port and dialer information directly in the sys file for simple cases.
It also shows the use of the following:

uucp.info 64 / 166

call-login
Using call-login and call-password allows the default login chat
script to be used. In this case, the login name is specified in
the call-out login file (see

Configuration File Names
).

call-timegrade
uunet is requested to not send us news during the daytime.

chat-fail
If the modem returns BUSY or NO CARRIER the call is immediately
aborted.

protocol-parameter
Since uunet tends to be slow, the default timeout has been
increased.

This sys file relies on certain defaults. It will allow uunet to
queue up rmail and rnews commands. It will allow users to request
files from uunet into the UUCP public directory. It will also allow
uunet to request files from the UUCP public directory; in fact
uunet never requests files, but for additional security we
could add the line request false.

The following information is for uunet
system uunet

The login name and password are kept in the callout password file
call-login *
call-password *

We can send anything at any time.
time any

During the day we only accept grade ‘Z’ or above; at other times
(not mentioned here) we accept all grades. uunet queues up news
at grade ‘d’, which is lower than ‘Z’.
call-timegrade Z Wk0755-2305,Su1655-2305

The phone number.
phone 7389449

uunet tends to be slow, so we increase the timeout
chat-timeout 120

We are using a preconfigured Telebit 2500.
port type modem
port device /dev/ttyd0
port speed 19200
port carrier true
port dialer chat "" ATZ\r\d\c OK ATDT\D CONNECT
port dialer chat-fail BUSY
port dialer chat-fail NO\sCARRIER
port dialer complete \d\d+++\d\dATH\r\c
port dialer abort \d\d+++\d\dATH\r\c

uucp.info 65 / 166

Increase the timeout and the number of retries.
protocol-parameter g timeout 20
protocol-parameter g retries 10

1.58 uucp.info/Gateway Example

Gateway Example

Many organizations have several local machines which are connected by
UUCP, and a single machine which connects to the outside world. This
single machine is often referred to as a gateway machine.

For this example I will assume a fairly simple case. It should still
provide a good general example. There are three machines, elmer,
comton and bugs. elmer is the gateway machine for which I
will show the configuration file. elmer calls out to uupsi. As an
additional complication, uupsi knows elmer as airs; this will show how
a machine can have one name on an internal network but a different name
to the external world. elmer has two modems. It also has an TCP
connection to uupsi, but since that is supposed to be reserved for
interactive work (it is, perhaps, only a 9600 baud SLIP line) it will
only use it if the modems are not available.

A network this small would normally use a single sys file. However,
for pedagogical purposes I will show two separate sys files, one for
the local systems and one for uupsi. This is done with the sysfile
command in the config file. Here is the config file.

This is config
The local sys file
sysfile /usr/local/lib/uucp/sys.local
The remote sys file
sysfile /usr/local/lib/uucp/sys.remote

Using the defaults feature of the sys file can greatly simplify the
listing of local systems. Here is sys.local. Note that this assumes
that the local systems are trusted; they are permited to request any
world readable file and to write files into any world writable
directory.

This is sys.local
Get the login name and password to use from the call-out file
call-login *
call-password *

The systems must use a particular login
called-login Ulocal

Permit sending any world readable file
local-send /
remote-send /

uucp.info 66 / 166

Permit receiving into any world writable directory
local-receive /
remote-receive /

Call at any time
time any

Use port1, then port2
port port1

alternate

port port2

Now define the systems themselves. Because of all the defaults we
used, there is very little to specify for the systems themselves.

system comton
phone 5551212

system bugs
phone 5552424

The sys.remote file describes the uupsi connection. The myname
command is used to change the UUCP name to airs when talking to uupsi.

This is sys.remote
Define uupsi
system uupsi

The login name and password are in the call-out file
call-login *
call-password *

We can call out at any time
time any

uupsi uses a special login name
called-login Uuupsi

uuspi thinks of us as ‘airs’
myname airs

The phone number
phone 5554848

We use port2 first, then port1, then TCP

port port2

alternate

port port1

alternate

uucp.info 67 / 166

We don’t bother to make a special entry in the port file for TCP, we
just describe the entire port right here. We use a special chat
script over TCP because the usual one confuses some TCP servers.
port type TCP
address uu.psi.com
chat ogin: \L word: \P

The ports are defined in the file port (see
port File
). For this

example they are both connected to the same type of 2400 baud
Hayes-compatible modem.

This is port

port port1
type modem
device /dev/ttyd0
dialer hayes
speed 2400

port port2
type modem
device /dev/ttyd1
dialer hayes
speed 2400

Dialers are described in the dial file (see
dial File
).

This is dial

dialer hayes

The chat script used to dial the phone. \D is the phone number.
chat "" ATZ\r\d\c OK ATDT\D CONNECT

If we get BUSY or NO CARRIER we abort the dial immediately
chat-fail BUSY
chat-fail NO\sCARRIER

When the call is over we make sure we hangup the modem.
complete \d\d+++\d\dATH\r\c
abort \d\d+++\d\dATH\r\c

1.59 uucp.info/Time Strings

Time Strings
============

Several commands use time strings to specify a range of times. This
section describes how to write time strings.

uucp.info 68 / 166

A time string may be a list of simple time strings separated with a
vertical bar | or a comma ,.

Each simple time string must begin with Su, Mo, Tu, We, Th, Fr, or
Sa, or Wk for any weekday, or Any for any day.

Following the day may be a range of hours separated with a hyphen
using 24 hour time. The range of hours may cross 0; for example
2300-0700 means any time except 7 AM to 11 PM. If no time is
given, calls may be made at any time on the specified day(s).

The time string may also be the single word Never, which does not
match any time. The time string may also be a single word with a name
defined in a previous timetable command (see

Miscellaneous (config)
).

Here are a few sample time strings with an explanation of what they
mean.

Wk2305-0855,Sa,Su2305-1655
This means weekdays before 8:55 AM or after 11:05 PM, any time
Saturday, or Sunday before 4:55 PM or after 11:05 PM. These are
approximately the times during which night rates apply to phone
calls in the U.S.A. Note that this time string uses, for example,
2305 rather than 2300; this will ensure a cheap rate
phone call even if the computer clock is running up to five
minutes ahead of the real time.

Wk0905-2255,Su1705-2255
This means weekdays from 9:05 AM to 10:55 PM, or Sunday from 5:05
PM to 10:55 PM. This is approximately the opposite of the
previous example.

Any
This means any day. Since no time is specified, it means any time
on any day.

1.60 uucp.info/Chat Scripts

Chat Scripts
============

Chat scripts are used in several different places, such as dialing
out on modems or logging in to remote systems. Chat scripts are made
up of pairs of strings. The program waits until it sees the first
string, known as the expect string, and then sends out the second
string, the send string.

Each chat script is defined using a set of commands. These commands
always end in a string beginning with chat, but may start with
different strings. For example, in the sys file there is one set of

uucp.info 69 / 166

commands beginning with chat and another set beginning with
called-chat. The prefixes are only used to disambiguate
different types of chat scripts, and this section ignores the prefixes
when describing the commands.

chat STRINGS
Specify a chat script. The arguments to the chat command are
pairs of strings separated by whitespace. The first string of
each pair is an expect string, the second is a send string. The
program will wait for the expect string to appear; when it does,
the program will send the send string. If the expect string does
not appear within a certain number of seconds (as set by the
chat-timeout command), the chat script fails and,
typically, the call is aborted. If the final expect string is
seen (and the optional final send string has been sent), the chat
script is successful.

An expect string may contain additional subsend and subexpect
strings, separated by hyphens. If the expect string is not seen,
the subsend string is sent and the chat script continues by
waiting for the subexpect string. This means that a hyphen may
not appear in an expect string; on an ASCII system, use \055
instead.

An expect string may simply be "", meaning to skip the expect
phase. Otherwise, the following escape characters may appear in
expect strings:

\b
a backspace character

\n
a newline or line feed character

\N
a null character (for HDB compatibility)

\r
a carriage return character

\s
a space character

\t
a tab character

\\
a backslash character

\DDD
character DDD, where DDD are up to three octal digits

\xDDD
character DDD, where DDD are hexadecimal digits.

As in C, there may be up to three octal digits following a
backslash, but the hexadecimal escape sequence continues as far as

uucp.info 70 / 166

possible. To follow a hexadecimal escape sequence with a hex
digit, interpose a send string of "".

A chat script expect string may also specify a timeout. This is
done by using the escape sequence \WSECONDS. This escape sequence
may only appear at the very end of the expect string. It
temporarily overrides the timeout set by chat-timeout (described
below) only for the expect string to which it is attached.

A send string may simply be "" to skip the send phase. Otherwise,
all of the escape characters legal for expect strings may be used,
and the following escape characters are also permitted:

EOT
send an end of transmission character (^D)

BREAK
send a break character (may not work on all systems)

\c
suppress trailing carriage return at end of send string

\d
delay sending for 1 or 2 seconds

\e
disable echo checking

\E
enable echo checking

\K
same as BREAK (for HDB compatibility)

\p
pause sending for a fraction of a second

Some specific types of chat scripts also define additional escape
sequences that may appear in the send string. For example, the
login chat script defines \L and \P to send the login name and
password, respectively.

A carriage return will be sent at the end of each send string,
unless the \c escape sequence appears in the string. Note that
some UUCP packages use \b for break, but here it means backspace.

Echo checking means that after writing each character the program
will wait until the character is echoed. Echo checking must be
turned on separately for each send string for which it is desired;
it will be turned on for characters following \E and turned off
for characters following \e.

chat-timeout NUMBER
The number of seconds to wait for an expect string in the chat
script, before timing out and sending the next subsend, or failing
the chat script entirely. The default value is 10 for a login
chat or 60 for any other type of chat.

uucp.info 71 / 166

chat-fail STRING
If the STRING is seen at any time during a chat script, the chat
script is aborted. The string may not contain any whitespace
characters: escape sequences must be used for them. Multiple
chat-fail commands may appear in a single chat script.
The default is to have none.

This permits a chat script to be quickly aborted if an error
string is seen. For example, a script used to dial out on a modem
might use the command chat-fail BUSY to stop the chat script
immediately if the string BUSY was seen.

The chat-fail strings are considered in the order they are listed,
so if one string is a suffix of another the longer one should be
listed first. This affects the error message which will be
logged. Of course, if one string is contained within another, but
is not a suffix, the smaller string will always be found before
the larger string could match.

chat-seven-bit BOOLEAN
If the argument is true, all incoming characters are stripped to
seven bits when being compared to the expect string. Otherwise
all eight bits are used in the comparison. The default is true,
because some Unix systems generate parity bits during the login
prompt which must be ignored while running a chat script. This
has no effect on any chat-program, which must ignore parity by
itself if necessary.

chat-program STRINGS
Specify a program to run before executing the chat script. This
program could run its own version of a chat script, or it could do
whatever it wants. If both chat-program and chat are specified,
the program is executed first followed by the chat script.

The first argument to the chat-program command is the program name
to run. The remaining arguments are passed to the program. The
following escape sequences are recognized in the arguments:

\Y
port device name

\S
port speed

\\
backslash

Some specific uses of chat-program define additional escape
sequences.

Arguments other than escape sequences are passed exactly as they
appear in the configuration file, except that sequences of
whitespace are compressed to a single space character (this
exception may be removed in the future).

If the chat-program command is not used, no program is run.

uucp.info 72 / 166

On Unix, the standard input and standard output of the program
will be attached to the port in use. Anything the program writes
to standard error will be written to the UUCP log file. No other
file descriptors will be open. If the program does not exit with
a status of 0, it will be assumed to have failed. This means that
the dialing programs used by some versions of HDB may not be used
directly, but you may be able to run them via the dialHDB program
in the contrib directory.

The program will be run as the uucp user, and the environment will
be that of the process that started uucico, so care must be taken
to maintain security.

No search path is used to find the program; a full file name must
be given. If the program is an executable shell script, it will
be passed to /bin/sh even on systems which are unable to execute
shell scripts.

Here is a simple example of a chat script that might be used to
reset a Hayes compatible modem.

chat "" ATZ OK-ATZ-OK

The first expect string is "", so it is ignored. The chat script
then sends ATZ. If the modem responds with OK, the chat script
finishes. If 60 seconds (the default timeout) pass before seeing OK,
the chat script sends another ATZ. If it then sees OK, the chat script
succeeds. Otherwise, the chat script fails.

For a more complex chat script example, see
Logging In
.

1.61 uucp.info/config File

The Main Configuration File
===========================

The main configuration file is named config.

Since all the values that may be specified in the main configuration
file also have defaults, there need not be a main configuration file at
all.

Each command in config may have a program prefix, which is a
separate word appearing at the beginning of the line. The currently
supported prefixes are uucp and cu. Any command prefixed by uucp will
not be read by the cu program. Any command prefixed by cu will only be
read by the cu program. For example, to use a list of systems known
only to cu, list them in a separate file FILE and put cu sysfile FILE
in config.

uucp.info 73 / 166

Miscellaneous (config)
Miscellaneous config File Commands

Configuration File Names
Using Different Configuration Files

Log File Names
Using Different Log Files

Debugging Levels
Debugging Levels

1.62 uucp.info/Miscellaneous (config)

Miscellaneous config File Commands

nodename STRING
hostname STRING
uuname STRING

These keywords are equivalent. They specify the UUCP name of the
local host. If there is no configuration file, an appropriate
system function will be used to get the host name, if possible.

spool STRING
Specify the spool directory. The default is from policy.h. This
is where UUCP files are queued. Status files and various sorts of
temporary files are also stored in this directory and
subdirectories of it.

pubdir STRING
Specify the public directory. The default is from policy.h. When
a file is named using a leading ~/, it is taken from or to the
public directory. Each system may use a separate public directory
by using the pubdir command in the system configuration file; see

Miscellaneous (sys)
.

lockdir STRING
Specify the directory to place lock files in. The default is from
policy.h; see the information in that file. Normally the
lock directory should be set correctly in policy.h, and not changed
here. However, changing the lock directory is sometimes useful for
testing purposes. This only affects lock files for devices and
systems; it does not affect certain internal lock files which are
stored in the spool directory (see

Spool Lock Files
).

unknown STRING ...

uucp.info 74 / 166

The STRING and subsequent arguments are treated as though they
appeared in the system file (see

sys File
). They are used to apply

to any unknown systems that may call in, probably to set file
transfer permissions and the like. If the unknown command is not
used, unknown systems are not permitted to call in.

strip-login BOOLEAN
If the argument is true, then, when uucico is doing its own login
prompting with the -e, -l, or -w switches, it will strip the
parity bit when it reads the login name and password. Otherwise
all eight bits will be used when checking the strings against the
UUCP password file. The default is true, since some other UUCP
packages send parity bits with the login name and password, and few
systems use eight bit characters in the password file.

strip-proto BOOLEAN
If the argument is true, then uucico will strip the parity bit
from incoming UUCP protocol commands. Otherwise all eight bits
will be used. This only applies to commands which are not
encapsulated in a link layer protocol. The default is true, which
should always be correct unless your UUCP system names use eight
bit characters.

max-uuxqts NUMBER
Specify the maximum number of uuxqt processes which may run at the
same time. Having several uuxqt processes running at once can
significantly slow down a system, but, since uuxqt is
automatically started by uucico, it can happen quite easily. The
default for max-uuxqts is 0, which means that there is no limit.
If HDB configuration files are being read and the code was compiled
without HAVE_TAYLOR_CONFIG, then, if the file Maxuuxqts in the
configuration directory contains a readable number, it will be used
as the value for max-uuxqts.

run-uuxqt STRING or NUMBER
Specify when uuxqt should be run by uucico. This may be a
positive number, in which case uucico will start a uuxqt process
whenever it receives the given number of execution files from the
remote system, and, if necessary, at the end of the call. The
argument may also be one of the strings once, percall, or never.
The string once means that uucico will start uuxqt once at the end
of execution. The string percall means that uucico will start
uuxqt once per call that it makes (this is only different
from once when uucico is invoked in a way that causes it to make
multiple calls, such as when the -r1 option is used without the -s
option). The string never means that uucico will never start
uuxqt, in which case uuxqt should be periodically run via
some other mechanism. The default depends upon which type of
configuration files are being used; if HAVE_TAYLOR_CONFIG is used
the default is once, otherwise if HAVE_HDB_CONFIG is used the
default is percall, and otherwise, for HAVE_V2_CONFIG, the default
is 10.

timetable STRING STRING
The timetable defines a timetable that may be used in subsequently

uucp.info 75 / 166

appearing time strings; see
Time Strings
. The first string names

the timetable entry; the second is a time string.

The following timetable commands are predefined. The NonPeak
timetable is included for compatibility. It originally described
the offpeak hours of Tymnet and Telenet, but both have since
changed their schedules.

timetable Evening Wk1705-0755,Sa,Su
timetable Night Wk2305-0755,Sa,Su2305-1655
timetable NonPeak Wk1805-0655,Sa,Su

If this command does not appear, then, obviously, no additional
timetables will be defined.

v2-files BOOLEAN
If the code was compiled to be able to read V2 configuration
files, a false argument to this command will prevent them from
being read. This can be useful while testing. The default is
true.

hdb-files BOOLEAN
If the code was compiled to be able to read HDB configuration
files, a false argument to this command will prevent them from
being read. This can be useful while testing. The default is
true.

1.63 uucp.info/Configuration File Names

Configuration File Names

sysfile STRINGS
Specify the system file(s). The default is the file sys in the
directory NEWCONFIGDIR. These files hold information about other
systems with which this system communicates; see

sys File
.

Multiple system files may be given on the line, and the sysfile
command may be repeated; each system file has its own set of
defaults.

portfile STRINGS
Specify the port file(s). The default is the file port in the
directory NEWCONFIGDIR. These files describe ports which are used
to call other systems and accept calls from other systems; see

port File
. No port files need be named at all. Multiple port

files may be given on the line, and the portfile command may be
repeated.

uucp.info 76 / 166

dialfile STRINGS
Specify the dial file(s). The default is the file dial in the
directory NEWCONFIGDIR. These files describe dialing devices
(modems); see

dial File
. No dial files need be named at all.

Multiple dial files may be given on the line, and the dialfile
command may be repeated.

dialcodefile STRINGS
Specify the dialcode file(s). The default is the file dialcode in
the directory NEWCONFIGDIR. These files specify dialcodes that
may be used when sending phone numbers to a modem. This permits
using the same set of phone numbers in different area-codes or
with different phone systems, by using dialcodes to specify the
calling sequence. When a phone number goes through dialcode
translation, the leading alphabetic characters are stripped off.
The dialcode files are read line by line, just like any other
configuration file, and when a line is found whose first word is
the same as the leading characters from the phone number, the
second word on the line (which would normally consist of numbers)
replaces the dialcode in the phone number. No dialcode file need
be used. Multiple dialcode files may be specified on the line,
and the dialcodefile command may be repeated; all the dialcode
files will be read in turn until a dialcode is located.

callfile STRINGS
Specify the call out login name and password file(s). The default
is the file call in the directory NEWCONFIGDIR. If the call out
login name or password for a system are given as * (see

Logging In
), these files are read to get the real login name or

password. Each line in the file(s) has three words: the system
name, the login name, and the password. The login name and
password may contain escape sequences like those in a chat script
expect string (see

Chat Scripts
). This file is only used when

placing calls to remote systems; the password file described under passwdfile
below is used for incoming calls. The intention of the call out
file is to permit the system file to be publically readable; the
call out files must obviously be kept secure. These files need
not be used. Multiple call out files may be specified on the
line, and the callfile command may be repeated; all the files will
be read in turn until the system is found.

passwdfile STRINGS
Specify the password file(s) to use for login names when uucico is
doing its own login prompting, which it does when given the -e, -l
or -w switches. The default is the file passwd in the directory
NEWCONFIGDIR. Each line in the file(s) has two words:
the login name and the password (e.g., Ufoo foopas). They may
contain escape sequences like those in a chat script expect string
(see

Chat Scripts

uucp.info 77 / 166

). The login name is accepted before the system
name is known, so these are independent of which system is calling
in; a particular login may be required for a system by using the
called-login command in the system file (see

Accepting a Call
). These password files are optional, although

one must exist if uucico is to present its own login prompts.

As a special exception, a colon may be used to separate the login
name from the password, and a colon may be used to terminate the
password. This means that the login name and password may not
contain a colon. This feature, in conjunction with the ←↩

HAVE_ENCRYPTED_PASSWORDS
macro in policy.h, permits using a standard Unix /etc/passwd as a
UUCP password file, providing the same set of login names and
passwords for both getty and uucico.

Multiple password files may be specified on the line, and the
passwdfile command may be repeated; all the files will be
read in turn until the login name is found.

1.64 uucp.info/Log File Names

Log File Names

logfile STRING
Name the log file. The default is from policy.h. Logging
information is written to this file. If HAVE_HDB_LOGGING is
defined in policy.h, then by default a separate log file is used
for each system; using this command to name a log file will cause
all the systems to use it.

statfile STRING
Name the statistics file. The default is from policy.h.
Statistical information about file transfers is written to this
file.

debugfile STRING
Name the file to which all debugging information is written. The
default is from policy.h. This command is only effective if the
code has been compiled to include debugging (this is controlled by
the DEBUG macro in policy.h). If debugging is on, messages
written to the log file are also written to the debugging file to
make it easier to keep the order of actions straight. The
debugging file is different from the log file because information
such as passwords can appear in it, so it must be not be
publically readable.

uucp.info 78 / 166

1.65 uucp.info/Debugging Levels

Debugging Levels

debug STRING ...
Set the debugging level. This command is only effective if the
code has been compiled to include debugging. The default is to
have no debugging. The arguments are strings which name the types
of debugging to be turned on. The following types of debugging
are defined:

abnormal
Output debugging messages for abnormal situations, such as
recoverable errors.

chat
Output debugging messages for chat scripts.

handshake
Output debugging messages for the initial handshake.

uucp-proto
Output debugging messages for the UUCP session protocol.

proto
Output debugging messages for the individual link protocols.

port
Output debugging messages for actions on the communication
port.

config
Output debugging messages while reading the configuration
files.

spooldir
Output debugging messages for actions in the spool directory.

execute
Output debugging messages whenever another program is
executed.

incoming
List all incoming data in the debugging file.

outgoing
List all outgoing data in the debugging file.

all
All of the above.

The debugging level may also be specified as a number. A 1 will
set chat debugging, a 2 will set both chat and handshake
debugging, and so on down the possibilities. Currently an 11 will
turn on all possible debugging, since there are 11 types of

uucp.info 79 / 166

debugging messages listed above; more debugging types may be added
in the future. The debug command may be used several times in the
configuration file; every debugging type named will be turned on.
When running any of the programs, the -x switch (actually, for
uulog it’s the -X switch) may be used to turn on
debugging. The argument to the -x switch is one of the strings
listed above, or a number as described above, or a comma separated
list of strings (e.g., -x chat,handshake). The -x switch may
also appear several times on the command line, in which case all
named debugging types will be turned on. The -x debugging is in
addition to any debugging specified by the debug command; there is
no way to cancel debugging information. The debugging level may
also be set specifically for calls to or from a specific system
with the debug command in the system file (see

Miscellaneous (sys)
).

The debugging messages are somewhat idiosyncratic; it may be
necessary to refer to the source code for additional information
in some cases.

1.66 uucp.info/sys File

The System Configuration File
=============================

By default there is a single system configuration, named sys in the
directory NEWCONFIGDIR. This may be overridden by the sysfile command
in the main configuration file; see

Configuration File Names
.

These files describe all remote systems known to the UUCP package.

Defaults and Alternates
Using Defaults and Alternates

Naming the System
Naming the System

Calling Out
Calling Out

Accepting a Call
Accepting a Call

Protocol Selection
Protocol Selection

File Transfer Control

uucp.info 80 / 166

File Transfer Control

Miscellaneous (sys)
Miscellaneous sys File Commands

Default sys File Values
Default Values

1.67 uucp.info/Defaults and Alternates

Defaults and Alternates

The first set of commands in the file, up to the first system
command, specify defaults to be used for all systems in that file. Each
sys file uses a different set of defaults.

Subsequently, each set of commands from system up to the next system
command describe a particular system. Default values may be overridden
for specific systems.

Each system may then have a series of alternate choices to use when
calling out or calling in. The first set of commands for a particular
system, up to the first alternate command, provide the first choice.
Subsequently, each set of commands from alternate up to the next
alternate command describe an alternate choice for calling out
or calling in.

When a system is called, the commands before the first alternate are
used to select a phone number, port, and so forth; if the call fails
for some reason, the commands between the first alternate and the
second are used, and so forth. Well, not quite. Actually, each
succeeding alternate will only be used if it is different in some
relevant way (different phone number, different chat script, etc.). If
you want to force the same alternate to be used again (to retry a phone
call more than once, for example), enter the phone number (or any other
relevant field) again to make it appear different.

The alternates can also be used to give different permissions to an
incoming call based on the login name. This will only be done if the
first set of commands, before the first alternate command, uses the
called-login command. The list of alternates will be
searched, and the first alternate with a matching called-login command
will be used. If no alternates match, the call will be rejected.

The alternate command may also be used in the file-wide defaults
(the set of commands before the first system command). This might be
used to specify a list of ports which are available for all systems
(for an example of this, see

Gateway Example
) or to specify permissions

based on the login name used by the remote system when it calls in.
The first alternate for each system will default to the first alternate

uucp.info 81 / 166

for the file-wide defaults (as modified by the commands used before the
first alternate command for this system), the second alternate for each
system to the second alternate for the file-wide defaults (as modified
the same way), and so forth. If a system specifies more alternates
than the file-wide defaults, the trailing ones will default to the last
file-wide default alternate. If a system specifies fewer alternates
than the file-wide defaults, the trailing file-wide default alternates
will be used unmodified. The default-alternates command may be used to
modify this behaviour.

This can all get rather confusing, although it’s easier to use than
to describe concisely; the uuchk program may be used to ensure that you
are getting what you want.

1.68 uucp.info/Naming the System

Naming the System

system STRING
Specify the remote system name. Subsequent commands up to the next
system command refer to this system.

alternate [STRING]
Start an alternate set of commands (see

Defaults and Alternates
).

An optional argument may be used to name the alternate. This name
will be recorded in the log file if the alternate is used to call
the system. There is no way to name the first alternate (the
commands before the first alternate command).

default-alternates BOOLEAN
If the argument is false, any remaining default alternates (from
the defaults specified at the top of the current system file) will
not be used. The default is true.

alias STRING
Specify an alias for the current system. The alias may be used by
local uucp and uux commands, as well as by the remote system
(which can be convenient if a remote system changes its name). The
default is to have no aliases.

myname STRING
Specifies a different system name to use when calling the remote
system. Also, if called-login is used and is not ANY, then, when a
system logs in with that login name, STRING is used as the local
system name. Because the local system name must be determined
before the remote system has identified itself, using myname and
called-login together for any system will set the local
name for that login; this means that each locally used system name
must have a unique login name associated with it. This allows a
system to have different names for an external and an internal

uucp.info 82 / 166

network. The default is to not use a special local name.

1.69 uucp.info/Calling Out

Calling Out

This section describes commands used when placing a call to another
system.

When to Call
When to Call

Placing the Call
Placing the Call

Logging In
Logging In

1.70 uucp.info/When to Call

When to Call
............

time STRING [NUMBER]
Specify when the system may be called. The first argument is a
time string; see

Time Strings
. The optional second argument

specifies a retry time in minutes. If a call made during a time
that matches the time string fails, no more calls are permitted
until the retry time has passed. By default an exponentially
increasing retry time is used: after each failure the next retry
period is longer. A retry time specified in the time command is
always a fixed amount of time.

The time command may appear multiple times in a single alternate,
in which case if any time string matches the system may be called.
When the time command is used for a particular system, any time
or timegrade commands that appeared in the system defaults are
ignored.

The default time string is Never.

timegrade CHARACTER STRING [NUMBER]
The CHARACTER specifies a grade. It must be a single letter or

uucp.info 83 / 166

digit. The STRING is a time string (see
Time Strings
). All jobs

of grade CHARACTER or higher (where 0 > 9 > A > Z > a > z) may be
run at the specified time. An ordinary time command is equivalent
to using timegrade with a grade of z, permitting all jobs. If
there are no jobs of a sufficiently high grade according to the
time string, the system will not be called. Giving the -s switch
to uucico to force it to call a system causes it to assume there
is a job of grade 0 waiting to be run.

The optional third argument specifies a retry time in minutes.
See the time command, above, for more details.

Note that the timegrade command serves two purposes: 1) if there
is no job of sufficiently high grade the system will not be
called, and 2) if the system is called anyway (because the -s
switch was given to uucico) only jobs of sufficiently high grade
will be transferred. However, if the other system calls in, the
timegrade commands are ignored, and jobs of any grade may
be transferred (but see call-timegrade and called-timegrade,
below). Also, the timegrade command will not prevent the other
system from transferring any job it chooses, regardless of who
placed the call.

The timegrade command may appear multiple times without using
alternate. When the timegrade command is used for a
particular system, any time or timegrade commands that appeared in
the system defaults are ignored.

If this command does not appear, there are no restrictions on what
grade of work may be done at what time.

max-retries NUMBER
Gives the maximum number of times this system may be retried. If
this many calls to the system fail, it will be called at most once
a day whatever the retry time is. The default is 26.

success-wait NUMBER
A retry time, in seconds, which applies after a successful call.
This can be used to put a limit on how frequently the system is
called. For example, an argument of 1800 means that the system
will not be called more than once every half hour. The default is
0, which means that there is no limit.

call-timegrade CHARACTER STRING
The CHARACTER is a single character A to Z, a to z, or 0 to 9 and
specifies a grade. The STRING is a time string (see

Time Strings
). If a call is placed to the other system during a

time which matches the time string, the remote system will be
requested to only run jobs of grade CHARACTER or higher.
Unfortunately, there is no way to guarantee that the other system
will obey the request (this UUCP package will, but there are
others which will not); moreover, job grades are historically
somewhat arbitrary, so specifying a grade will only be meaningful

uucp.info 84 / 166

if the other system cooperates in assigning grades. This grade
restriction only applies when the other system is called, not when
the other system calls in.

The call-timegrade command may appear multiple times without using
alternate. If this command does not appear, or if none of
the time strings match, the remote system will be allowed to send
whatever grades of work it chooses.

called-timegrade CHARACTER STRING
The CHARACTER is a single character A to Z, a to z, or 0 to 9 and
specifies a grade. The STRING is a time string (see

Time Strings
). If a call is received from the other system during

a time which matches the time string, only jobs of grade CHARACTER
or higher will be sent to the remote system. This allows the job
grade to be set for incoming calls, overriding any request made by
the remote uucico. As noted above, job grades are historically
somewhat arbitrary, so specifying a grade will only be meaningful
if the other system cooperates in assigning grades. This grade
restriction only applies to jobs on the local system; it does not
affect the jobs transferred by the remote system. This grade
restriction only applies when the other system calls in, not when
the other system is called.

The called-timegrade command may appear multiple times. If this
command does not appear, or if none of the time strings match, any
grade may be sent to the remote system upon receiving a call.

1.71 uucp.info/Placing the Call

Placing the Call
................

speed NUMBER
baud NUMBER

Specify the speed (the term baud is technically incorrect, but
widely understood) at which to call the system. This will try all
available ports with that speed until an unlocked port is found.
The ports are defined in the port file. If both speed and port
commands appear, both are used when selecting a port. To allow
calls at more than one speed, the alternate command must be used
(see

Defaults and Alternates
). If this command does not appear,

there is no default; the speed may be specified in the port file,
but if it is not then the natural speed of the port will be used
(whatever that means on the system). Specifying an explicit speed
of 0 will request the natural speed of the port (whatever the
system sets it to), overriding any default speed from the defaults
at the top of the file.

uucp.info 85 / 166

port STRING
Name a particular port or type of port to use when calling the
system. The information for this port is obtained from the port
file. If this command does not appear, there is no default; a
port must somehow be specified in order to call out (it may be
specified implicitly using the speed command or explicitly using
the next version of port). There may be many ports with the same
name; each will be tried in turn until an unlocked one is found
which matches the desired speed.

port STRING ...
If more than one string follows the port command, the strings are
treated as a command that might appear in the port file (see

port File
). If a port is named (by using a single string following

port) these commands are ignored; their purpose is to permit
defining the port completely in the system file rather than always
requiring entries in two different files. In order to call out, a
port must be specified using some version of the port command, or
by using the speed command to select ports from the port file.

phone STRING
address STRING

Give a phone number to call (when using a modem port) or a remote
host to contact (when using a TCP or TLI port). The commands phone
and address are equivalent; the duplication is intended to provide
a mnemonic choice depending on the type of port in use.

When used with a modem port, an = character in the phone number
means to wait for a secondary dial tone (although only some modems
support this); a - character means to pause while dialing for 1
second (again, only some modems support this). If the system has
more than one phone number, each one must appear in a different
alternate. The phone command must appear in order to call out on
a modem; there is no default.

When used with a TCP port, the string names the host to contact.
It may be a domain name or a numeric Internet address. If no
address is specified, the system name is used.

When used with a TLI port, the string is treated as though it were
an expect string in a chat script, allowing the use of escape
characters (see

Chat Scripts
). The dialer-sequence command in the

port file may override this address (see
port File
).

When used with a port that not a modem or TCP or TLI, this command
is ignored.

uucp.info 86 / 166

1.72 uucp.info/Logging In

Logging In
..........

chat STRINGS
chat-timeout NUMBER
chat-fail STRING
chat-seven-bit BOOLEAN
chat-program STRINGS

These commands describe a chat script to use when logging on to a
remote system. This login chat script is run after any chat
script defined in the dial file (see

dial File
). Chat scripts are

explained in
Chat Scripts
.

Two additional escape sequences may be used in send strings.

\L
Send the login name, as set by the call-login command.

\P
Send the password, as set by the call-password command.

Three additional escape sequences may be used with the
chat-program command. These are \L and \P, which become
the login name and password, respectively, and \Z, which becomes
the name of the system of being called.

The default chat script is:

chat "" \r\c ogin:-BREAK-ogin:-BREAK-ogin: \L word: \P

This will send a carriage return (the \c suppresses the additional
trailing carriage return that would otherwise be sent) and waits
for the string ogin: (which would be the last part of the login:
prompt supplied by a Unix system). If it doesn’t see ogin:, it
sends a break and waits for ogin: again. If it still doesn’t see
ogin:, it sends another break and waits for ogin: again.
If it still doesn’t see ogin:, the chat script aborts and hangs up
the phone. If it does see ogin: at some point, it sends the login
name (as specified by the call-login command) followed by a
carriage return (since all send strings are followed by a carriage
return unless \c is used) and waits for the string word: (which
would be the last part of the Password: prompt supplied by a Unix
system). If it sees word:, it sends the password and a carriage
return, completing the chat script. The program will then enter
the handshake phase of the UUCP protocol.

This chat script will work for most systems, so you will only be
required to use the call-login and call-password commands. In
fact, in the file-wide defaults you could set defaults of call-login

* and call-password *; you would then just have to make an

uucp.info 87 / 166

entry for each system in the call-out login file.

Some systems seem to flush input after the login: prompt, so they
may need a version of this chat script with a \d before the \L.
When using UUCP over TCP, some servers will not be handle the
initial carriage return sent by this chat script; in this case you
may have to specify the simple chat script ogin: \L word: \P.

call-login STRING
Specify the login name to send with \L in the chat script. If the
string is * (e.g., call-login *) the login name will be fetched
from the call out login name and password file (see

Configuration File Names
). The string may contain escape

sequences as though it were an expect string in a chat script (see

Chat Scripts
). There is no default.

call-password STRING
Specify the password to send with \P in the chat script. If the
string is * (e.g., call-password *) the password will be fetched
from the call-out login name and password file (see

Configuration File Names
). The string may contain escape

sequences as though it were an expect string in a chat script (see

Chat Scripts
). There is no default.

1.73 uucp.info/Accepting a Call

Accepting a Call

called-login STRINGS
The first STRING specifies the login name that the system must use
when calling in. If it is ANY (e.g., called-login ANY) any login
name may be used; this is useful to override a file-wide default
and to indicate that future alternates may have different login
names. Case is significant. The default value is ANY.

Different alternates (see
Defaults and Alternates
) may use

different called-login commands, in which case the login name will
be used to select which alternate is in effect; this will only
work if the first alternate (before the first alternate command)
uses the called-login command.

Additional strings may be specified after the login name; they are

uucp.info 88 / 166

a list of which systems are permitted to use this login name. If
this feature is used, then normally the login name will only be
given in a single called-login command. Only systems which appear
on the list, or which use an explicit called-login command, will be
permitted to use that login name. If the same login name is used
more than once with a list of systems, all the lists are
concatenated together. This feature permits you to restrict a
login name to a particular set of systems without requiring you to
use the called-login command for every single system; you can
achieve a similar effect by using a different system file for each
permitted login name with an appropriate called-login command in
the file-wide defaults.

callback BOOLEAN
If BOOLEAN is true, then when the remote system calls uucico will
hang up the connection and prepare to call it back. The default
is false.

called-chat STRINGS
called-chat-timeout NUMBER
called-chat-fail STRING
called-chat-seven-bit BOOLEAN
called-chat-program STRINGS

These commands may be used to define a chat script (see

Chat Scripts
) that is run whenever the local system is called by

the system being defined. The chat script defined by the chat
command (see

Logging In
), on the other hand, is used when the

remote system is called. This called chat script might be used to
set special modem parameters that are appropriate to a particular
system. It is run after protocol negotiation is complete, but
before the protocol has been started. For additional escape
sequence which may be used besides those defined for all chat
scripts, see

Logging In
. There is no default called chat script.

If the called chat script fails, the incoming call will be aborted.

1.74 uucp.info/Protocol Selection

Protocol Selection

protocol STRING
Specifies which protocols to use for the other system, and in which
order to use them. This would not normally be used. For example, protocol
tfg.

The default depends on the characteristics of the port and the
dialer, as specified by the seven-bit and reliable commands. If

uucp.info 89 / 166

neither the port nor the dialer use either of these commands, the
default is to assume an eight-bit reliable connection. The
commands seven-bit true or reliable false might be used in either
the port or the dialer to change this. Each protocol has
particular requirements that must be met before it will be
considered during negotiation with the remote side.

The t and e protocols are intended for use over TCP or some other
communication path with end to end reliability, as they do no
checking of the data at all. They will only be considered on a
TCP port which is both reliable and eight bit. For technical
details, see

t Protocol
, and
e Protocol
.

The i protocol is a bidirectional protocol. It requires an
eight-bit connection. It will run over a half-duplex link, such as
Telebit modems in PEP mode, but for efficient use of such a
connection you must use the half-duplex command (see

port File
).

See
i Protocol
.

The g protocol is robust, but requires an eight-bit connection.
See

g Protocol
.

The G protocol is the System V Release 4 version of the g
protocol. See

Big G Protocol
.

The a protocol is a Zmodem like protocol, contributed by Doug
Evans. It requires an eight-bit connection, but unlike the g or i
protocol it will work if certain control characters may not be
transmitted.

The j protocol is a variant of the i protocol which can avoid
certain control characters. The set of characters it avoids can
be set by a parameter. While it technically does not require an
eight bit connection (it could be configured to avoid all
characters with the high bit set) it would be very inefficient to
use it over one. It is useful over a eight-bit connection that
will not transmit certain control characters. See

j Protocol
.

The f protocol is intended for use with X.25 connections; it
checksums each file as a whole, so any error causes the entire
file to be retransmitted. It requires a reliable connection, but
only uses seven-bit transmissions. It is a streaming protocol,
so, while it can be used on a serial port, the port must be

uucp.info 90 / 166

completely reliable and flow controlled; many aren’t. See

f Protocol
.

The v protocol is the g protocol as used by the DOS program
UUPC/Extended. It is provided only so that UUPC/Extended users
can use it; there is no particular reason to select it. See

v Protocol
.

The y protocol is an efficient streaming protocol. It does error
checking, but when it detects an error it immediately aborts the
connection. This requires a reliable, flow controlled, eight-bit
connection. In practice, it is only useful on a connection that is
nearly always error-free. Unlike the t and e protocols, the
connection need not be entirely error-free, so the y protocol can
be used on a serial port. See

y Protocol
.

The protocols will be considered in the order shown above. This
means that if neither the seven-bit nor the reliable command are
used, the t protocol will be used over a TCP connection and the i
protocol will be used over any other type of connection (subject,
of course, to what is supported by the remote system; it may be
assumed that all systems support the g protocol).

Note that currently specifying both seven-bit true and reliable
false will not match any protocol. If this occurs through a
combination of port and dialer specifications, you will have to
use the protocol command for the system or no protocol will be
selected at all (the only reasonable choice would be protocol f).

A protocol list may also be specified for a port (see
port File
),

but, if there is a list for the system, the list for the port is
ignored.

protocol-parameter CHARACTER STRING ...
CHARACTER is a single character specifying a protocol. The
remaining strings are a command specific to that protocol which
will be executed if that protocol is used. A typical command is
something like window 7. The particular commands are protocol
specific.

The i protocol supports the following commands, all of which take
numeric arguments:

window
The window size to request the remote system to use. This
must be between 1 and 16 inclusive. The default is 16.

packet-size
The packet size to request the remote system to use. This

uucp.info 91 / 166

must be between 1 and 4095 inclusive. The default is 1024.

remote-packet-size
If this is between 1 and 4095 inclusive, the packet size
requested by the remote system is ignored, and this is used
instead. The default is 0, which means that the remote
system’s request is honored.

sync-timeout
The length of time, in seconds, to wait for a SYNC packet
from the remote system. SYNC packets are exchanged when the
protocol is started. The default is 10.

sync-retries
The number of times to retry sending a SYNC packet before
giving up. The default is 6.

timeout
The length of time, in seconds, to wait for an incoming
packet before sending a negative acknowledgement. The
default is 10.

retries
The number of times to retry sending a packet or a negative
acknowledgement before giving up and closing the connection.
The default is 6.

errors
The maximum number of errors to permit before closing the
connection. The default is 100.

error-decay
The rate at which to ignore errors. Each time this many
packets are received, the error count is decreased by one, so
that a long connection with an occasional error will not
exceed the limit set by errors. The default is 10.

ack-frequency
The number of packets to receive before sending an
acknowledgement. The default is half the requested window
size, which should provide good performance in most cases.

The g, G and v protocols support the following commands, all of
which take numeric arguments, except short-packets which takes a
boolean argument:

window
The window size to request the remote system to use. This
must be between 1 and 7 inclusive. The default is 7.

packet-size
The packet size to request the remote system to use. This
must be a power of 2 between 32 and 4096 inclusive. The
default is 64 for the g and G protocols and 1024 for the v
protocol. Many older UUCP packages do not support packet
sizes larger than 64, and many others do not support packet
sizes larger than 128. Some UUCP packages will even dump

uucp.info 92 / 166

core if a larger packet size is requested. The packet size
is not a negotiation, and it may be different in each
direction. If you request a packet size larger than the
remote system supports, you will not be able to send any
files.

startup-retries
The number of times to retry the initialization sequence.
The default is 8.

init-retries
The number of times to retry one phase of the initialization
sequence (there are three phases). The default is 4.

init-timeout
The timeout in seconds for one phase of the initialization
sequence. The default is 10.

retries
The number of times to retry sending either a data packet or
a request for the next packet. The default is 6.

timeout
The timeout in seconds when waiting for either a data packet
or an acknowledgement. The default is 10.

garbage
The number of unrecognized bytes to permit before dropping the
connection. This must be larger than the packet size. The
default is 10000.

errors
The number of errors (malformed packets, out of order
packets, bad checksums, or packets rejected by the remote
system) to permit before dropping the connection. The
default is 100.

error-decay
The rate at which to ignore errors. Each time this many
packets are received, the error count is decreased by one, so
that a long connection with an occasional error will not
exceed the limit set by errors. The default is 10.

remote-window
If this is between 1 and 7 inclusive, the window size
requested by the remote system is ignored and this is used
instead. This can be useful when dealing with some poor UUCP
packages. The default is 0, which means that the remote
system’s request is honored.

remote-packet-size
If this is between 32 and 4096 inclusive the packet size
requested by the remote system is ignored and this is used
instead. There is probably no good reason to use this. The
default is 0, which means that the remote system’s request is
honored.

uucp.info 93 / 166

short-packets
If this is true, then the code will optimize by sending
shorter packets when there is less data to send. This
confuses some UUCP packages, such as System V Release 4 (when
using the G protocol) and Waffle; when connecting to such a
package, this parameter must be set to false. The default is
true for the g and v protocols and false for the G protocol.

The a protocol is a Zmodem like protocol contributed by Doug
Evans. It supports the following commands, all of which take
numeric arguments except for escape-control, which takes a boolean
argument:

timeout
Number of seconds to wait for a packet to arrive. The
default is 10.

retries
The number of times to retry sending a packet. The default
is 10.

startup-retries
The number of times to retry sending the initialization
packet. The default is 4.

garbage
The number of garbage characters to accept before closing the
connection. The default is 2400.

send-window
The number of characters that may be sent before waiting for
an acknowledgement. The default is 1024.

escape-control
Whether to escape control characters. If this is true, the
protocol may be used over a connection which does not
transmit certain control characters, such as XON or XOFF.
The connection must still transmit eight bit characters other
than control characters. The default is false.

The j protocol can be used over an eight bit connection that will
not transmit certain control characters. It accepts the same
protocol parameters that the i protocol accepts, as well as one
more:

avoid
A list of characters to avoid. This is a string which is
interpreted as an escape sequence (see

Chat Scripts
). The

protocol does not have a way to avoid printable ASCII
characters (byte values from 32 to 126, inclusive); only
ASCII control characters and eight-bit characters may be
avoided. The default value is \021\023; these are the
characters XON and XOFF, which many connections use for flow
control. If the package is configured to use HAVE_BSD_TTY,
then on some versions of Unix you may have to avoid \377 as

uucp.info 94 / 166

well, due to the way some implementations of the BSD terminal
driver handle signals.

The f protocol is intended for use with error-correcting modems
only; it checksums each file as a whole, so any error causes the
entire file to be retransmitted. It supports the following
commands, both of which take numeric arguments:

timeout
The timeout in seconds before giving up. The default is 120.

retries
How many times to retry sending a file. The default is 2.

The t and e protocols are intended for use over TCP or some other
communication path with end to end reliability, as they do no
checking of the data at all. They both support a single command,
which takes a numeric argument:

timeout
The timeout in seconds before giving up. The default is 120.

The y protocol is a streaming protocol contributed by Jorge Cwik.
It supports the following commands, both of which take numeric
arguments:

timeout
The timeout in seconds when waiting for a packet. The
default is 60.

packet-size
The packet size to use. The default is 1024.

The protocol parameters are reset to their default values after
each call.

1.75 uucp.info/File Transfer Control

File Transfer Control

send-request BOOLEAN
The BOOLEAN determines whether the remote system is permitted to
request files from the local system. The default is yes.

receive-request BOOLEAN
The BOOLEAN determines whether the remote system is permitted to
send files to the local system. The default is yes.

request BOOLEAN
A shorthand command, equivalent to specifying both send-request
BOOLEAN and receive-request BOOLEAN.

uucp.info 95 / 166

call-transfer BOOLEAN
The BOOLEAN is checked when the local system places the call. It
determines whether the local system may do file transfers queued
up for the remote system. The default is yes.

called-transfer BOOLEAN
The BOOLEAN is checked when the remote system calls in. It
determines whether the local system may do file transfers queued
up for the remote system. The default is yes.

transfer BOOLEAN
A shorthand command, equivalent to specifying both call-transfer
BOOLEAN and called-transfer BOOLEAN.

call-local-size NUMBER STRING
The STRING is a time string (see

Time Strings
). The NUMBER is the

size in bytes of the largest file that should be transferred at a
time matching the time string, if the local system placed the call
and the request was made by the local system. This command may
appear multiple times in a single alternate. If this command does
not appear, or if none of the time strings match, there are no
size restrictions.

With all the size control commands, the size of a file from the
remote system (as opposed to a file from the local system) will
only be checked if the other system is running this package: other
UUCP packages will not understand a maximum size request, nor will
they provide the size of remote files.

call-remote-size NUMBER STRING
Specify the size in bytes of the largest file that should be
transferred at a given time by remote request, when the local
system placed the call. This command may appear multiple times in
a single alternate. If this command does not appear, there are no
size restrictions.

called-local-size NUMBER STRING
Specify the size in bytes of the largest file that should be
transferred at a given time by local request, when the remote
system placed the call. This command may appear multiple times in
a single alternate. If this command does not appear, there are no
size restrictions.

called-remote-size NUMBER STRING
Specify the size in bytes of the largest file that should be
transferred at a given time by remote request, when the remote
system placed the call. This command may appear multiple times in
a single alternate. If this command does not appear, there are no
size restrictions.

local-send STRINGS
Specifies that files in the directories named by the STRINGS may
be sent to the remote system when requested locally (using uucp or
uux). The directories in the list should be separated by
whitespace. A ~ may be used for the public directory. On a Unix

uucp.info 96 / 166

system, this is typically /usr/spool/uucppublic; the public
directory may be set with the pubdir command. Here is an example
of local-send:

local-send ~ /usr/spool/ftp/pub

Listing a directory allows all files within the directory and all
subdirectories to be sent. Directories may be excluded by
preceding them with an exclamation point. For example:

local-send /usr/ftp !/usr/ftp/private ~

means that all files in /usr/ftp or the public directory may be
sent, except those files in /usr/ftp/private. The list of
directories is read from left to right, and the last directory to
apply takes effect; this means that directories should be listed
from top down. The default is the root directory (i.e., any file
at all may be sent by local request).

remote-send STRINGS
Specifies that files in the named directories may be sent to the
remote system when requested by the remote system. The default is
~.

local-receive STRINGS
Specifies that files may be received into the named directories
when requested by a local user. The default is ~.

remote-receive STRINGS
Specifies that files may be received into the named directories
when requested by the remote system. The default is ~. On Unix,
the remote system may only request that files be received into
directories that are writeable by the world, regardless of how
this is set.

forward-to STRINGS
Specifies a list of systems to which files may be forwarded. The
remote system may forward files through the local system on to any
of the systems in this list. The string ANY may be used to permit
forwarding to any system. The default is to not permit forwarding
to other systems. Note that if the remote system is permitted to
execute the uucp command, it effectively has the ability to
forward to any system.

forward-from STRINGS
Specifies a list of systems from which files may be forwarded. The
remote system may request files via the local system from any of
the systems in this list. The string ANY may be used to permit
forwarding to any system. The default is to not permit forwarding
from other systems. Note that if a remote system is permitted to
execute the uucp command, it effectively has the ability to
request files from any system.

forward STRINGS
Equivalent to specifying both forward-to STRINGS and forward-from
STRINGS. This would normally be used rather than
either of the more specific commands.

uucp.info 97 / 166

1.76 uucp.info/Miscellaneous (sys)

Miscellaneous sys File Commands

sequence BOOLEAN
If BOOLEAN is true, then conversation sequencing is automatically
used for the remote system, so that if somebody manages to spoof
as the remote system, it will be detected the next time the remote
system actually calls. This is false by default.

command-path STRINGS
Specifies the path (a list of whitespace separated directories) to
be searched to locate commands to execute. This is only used for
commands requested by uux, not for chat programs. The default is
from policy.h.

commands STRINGS
The list of commands which the remote system is permitted to
execute locally. For example: commands rnews rmail. If the value
is ALL (case significant), all commands may be executed. The
default is rnews rmail.

free-space NUMBER
Specify the minimum amount of file system space (in bytes) to
leave free after receiving a file. If the incoming file will not
fit, it will be rejected. This initial rejection will only work
when talking to another instance of this package, since older UUCP
packages do not provide the file size of incoming files. Also,
while a file is being received, uucico will periodically check the
amount of free space. If it drops below the amount given by the
free-space command, the file transfer will be aborted.
The default amount of space to leave free is from policy.h. This
file space checking may not work on all systems.

pubdir STRING
Specifies the public directory that is used when ~ is specifed in
a file transfer or a list of directories. This essentially
overrides the public directory specified in the main configuration
file for this system only. The default is the public directory
specified in the main configuration file (which defaults to a
value from policy.h).

debug STRING ...
Set additional debugging for calls to or from the system. This
may be used to debug a connection with a specific system. It is
particularly useful when debugging incoming calls, since debugging
information will be generated whenever the call comes in. See the
debug command in the main configuration file (see

Debugging Levels
) for more details. The debugging information

uucp.info 98 / 166

specified here is in addition to that specified in the main
configuration file or on the command line.

max-remote-debug STRING ...
When the system calls in, it may request that the debugging level
be set to a certain value. The max-remote-debug command may be
used to put a limit on the debugging level which the system may
request, to avoid filling up the disk with debugging information.
Only the debugging types named in the max-remote-debug command may
be turned on by the remote system. To prohibit any debugging, use max-remote ←↩

-debug
none.

1.77 uucp.info/Default sys File Values

Default sys File Values

The following are used as default values for all systems; they can be
considered as appearing before the start of the file.

time Never
chat "" \r\c ogin:-BREAK-ogin:-BREAK-ogin: \L word: \P
chat-timeout 10
callback n
sequence n
request y
transfer y
local-send /
remote-send ~
local-receive ~
remove-receive ~
command-path [from policy.h]
commands rnews rmail
max-remote-debug abnormal,chat,handshake

1.78 uucp.info/port File

The Port Configuration File
===========================

The port files may be used to name and describe ports. By default
there is a single port file, named port in the directory NEWCONFIGDIR.
This may be overridden by the portfile command in the main
configuration file; see

Configuration File Names
.

Any commands in a port file before the first port command specify

uucp.info 99 / 166

defaults for all ports in the file; however, since the type command
must appear before all other commands for a port, the defaults are only
useful if all ports in the file are of the same type (this restriction
may be lifted in a later version). All commands after a port command
up to the next port command then describe that port. There are
different types of ports; each type supports its own set of commands.
Each command indicates which types of ports support it. There may be
many ports with the same name; if a system requests a port by name then
each port with that name will be tried until an unlocked one is found.

port STRING
Introduces and names a port.

type STRING
Define the type of port. The default is modem. If this command
appears, it must immediately follow the port command. The type
defines what commands are subsequently allowed. Currently the
types are:

modem
For a modem hookup.

stdin
For a connection through standard input and standard output,
as when uucico is run as a login shell.

direct
For a direct connection to another system.

tcp
For a connection using TCP.

tli
For a connection using TLI.

pipe
For a connection through a pipe running another program.

protocol STRING
Specify a list of protocols to use for this port. This is just
like the corresponding command for a system (see

Protocol Selection
). A protocol list for a system takes

precedence over a list for a port.

protocol-parameter CHARACTER STRINGS [any type]
The same command as the protocol-parameter command used for
systems (see

Protocol Selection
). This one takes precedence.

seven-bit BOOLEAN [any type]
This is only used during protocol negotiation; if the argument is
true, it forces the selection of a protocol which works across a
seven-bit link. It does not prevent eight bit characters from
being transmitted. The default is false.

uucp.info 100 / 166

reliable BOOLEAN [any type]
This is only used during protocol negotiation; if the argument is
false, it forces the selection of a protocol which works across an
unreliable communication link. The default is true. It would be
more common to specify this for a dialer rather than a port.

half-duplex BOOLEAN [any type]
If the argument is true, it means that the port only supports
half-duplex connections. This only affects bidirectional
protocols, and causes them to not do bidirectional transfers.

device STRING [modem, direct and tli only]
Names the device associated with this port. If the device is not
named, the port name is taken as the device. Device names are
system dependent. On Unix, a modem or direct connection might be
something like /dev/ttyd0; a TLI port might be /dev/inet/tcp.

speed NUMBER [modem and direct only]
baud NUMBER [modem and direct only]

The speed this port runs at. If a system specifies a speed but no
port name, then all ports which match the speed will be tried in
order. If the speed is not specified here and is not specified by
the system, the natural speed of the port will be used by default.

speed-range NUMBER NUMBER [modem only]
baud-range NUMBER NUMBER [modem only]

Specify a range of speeds this port can run at. The first number
is the minimum speed, the second number is the maximum speed.
These numbers will be used when matching a system which specifies
a desired speed. The simple speed (or baud) command is still used
to determine the speed to run at if the system does not specify a
speed. For example, the command speed-range 300 19200 means that
the port will match any system which uses a speed from 300 to
19200 baud (and will use the speed specified by the system); this
could be combined with speed 2400, which means that when this port
is used with a system that does not specify a speed, the port will
be used at 2400 baud.

carrier BOOLEAN [modem and direct only]
The argument indicates whether the port supports carrier.

If a modem port does not support carrier, the carrier detect
signal will never be required on this port, regardless of what the
modem chat script indicates. The default for a modem port is true.

If a direct port supports carrier, the port will be set to expect
carrier whenever it is used. The default for a direct port is
false.

hardflow BOOLEAN [modem and direct only]
The argument indicates whether the port supports hardware flow
control. If it does not, hardware flow control will not be turned
on for this port. The default is true. Hardware flow control is
only supported on some systems.

dial-device STRING [modem only]

uucp.info 101 / 166

Dialing instructions should be output to the named device, rather
than to the normal port device. The default is to output to the
normal port device.

dialer STRING [modem only]
Name a dialer to use. The information is looked up in the dial
file. There is no default. Some sort of dialer information must
be specified to call out on a modem.

dialer STRING ... [modem only]
If more than one string follows the dialer command, the strings
are treated as a command that might appear in the dial file (see

dial File
). If a dialer is named (by using the first form of this

command, described just above), these commands are ignored. They
may be used to specify dialer information directly in simple
situations without needing to go to a separate file. There is no
default. Some sort of dialer information must be specified to
call out on a modem.

dialer-sequence STRINGS [modem or tcp or tli only]
Name a sequence of dialers and tokens (phone numbers) to use. The
first argument names a dialer, and the second argument names a
token. The third argument names another dialer, and so on. If
there are an odd number of arguments, the phone number specified
with a phone command in the system file is used as the final
token. The token is what is used for \D or \T in the dialer chat
script. If the token in this string is \D, the system phone
number will be used; if it is \T, the system phone number will be
used after undergoing dialcodes translation. A missing final
token is taken as \D.

This command currently does not work if dial-device is specified;
to handle this correctly will require a more systematic notion of
chat scripts. Moreover, the complete and abort chat scripts, the
protocol parameters, and the carrier and dtr-toggle commands are
ignored for all but the first dialer.

This command basically lets you specify a sequence of chat scripts
to use. For example, the first dialer might get you to a local
network and the second dialer might describe how to select a
machine from the local network. This lets you break your dialing
sequence into simple modules, and may make it easier to share
dialer entries between machines.

This command is to only way to use a chat script with a TCP port.
This can be useful when using a modem which is accessed via TCP.

When this command is used with a TLI port, then if the first
dialer is TLI or TLIS the first token is used as the address to
connect to. If the first dialer is something else, or if there is
no token, the address given by the address command is used (see

Placing the Call
). Escape sequences in the address are expanded

as they are for chat script expect strings (see

uucp.info 102 / 166

Chat Scripts
).

The different between TLI and TLIS is that the latter implies the
command stream true. These contortions are all for HDB
compatibility. Any subsequent dialers are treated as they are for
a TCP port.

lockname STRING [modem and direct only]
Give the name to use when locking this port. On Unix, this is the
name of the file that will be created in the lock directory. It
is used as is, so on Unix it should generally start with LCK...
For example, if a single port were named both /dev/ttycu0 and
/dev/tty0 (perhaps with different characteristics keyed
on the minor device number), then the command lockname LCK..ttycu0
could be used to force the latter to use the same lock file name
as the former.

service STRING [tcp only]
Name the TCP port number to use. This may be a number. If not,
it will be looked up in /etc/services. If this is not specified,
the string uucp is looked up in /etc/services. If it is not
found, port number 540 (the standard UUCP-over-TCP port number)
will be used.

push STRINGS [tli only]
Give a list of modules to push on to the TLI stream.

stream BOOLEAN [tli only]
If this is true, and the push command was not used, the tirdwr
module is pushed on to the TLI stream.

server-address STRING [tli only]
Give the address to use when running as a TLI server. Escape
sequences in the address are expanded as they are for chat script
expect strings (see

Chat Scripts
).

The string is passed directly to the TLI t_bind function. The
value needed may depend upon your particular TLI implementation.
Check the manual pages, and, if necessary, try writing some sample
programs.

For AT&T 3B2 System V Release 3 using the Wollongong TCP/IP stack,
which is probably typical, the format of TLI string is SSPPIIII,
where SS is the service number (for TCP, this is 2), PP is the TCP
port number, and IIII is the Internet address. For example, to
accept a connection from on port 540 from any interface, use server-address
\x00\x02\x02\x1c\x00\x00\x00\x00. To only accept
connections from a particular interface, replace the last four
digits with the network address of the interface. (Thanks to Paul
Pryor for the information in this paragraph).

command STRINGS [pipe only]
Give the command, with arguments, to run when using a pipe port
type. When a port of this type is used, the command is executed
and uucico communicates with it over a pipe. This permits uucico

uucp.info 103 / 166

or cu to communicate with another system which can only be reached
through some unusual means. A sample use might be command /bin/rlogin -E -8 ←↩

-l LOGIN
SYSTEM. The command is run with the full privileges
of UUCP; it is responsible for maintaining security.

1.79 uucp.info/dial File

The Dialer Configuration File
=============================

The dialer configuration files define dialers. By default there is a
single dialer file, named dial in the directory NEWCONFIGDIR. This may
be overridden by the dialfile command in the main configuration file;
see

Configuration File Names
.

Any commands in the file before the first dialer command specify
defaults for all the dialers in the file. All commands after a dialer
command up to the next dialer command are associated with the named
dialer.

dialer STRING
Introduces and names a dialer.

chat STRINGS
chat-timeout NUMBER
chat-fail STRING
chat-seven-bit BOOLEAN
chat-program STRINGS

Specify a chat script to be used to dial the phone. This chat
script is used before the login chat script in the sys file, if any
(see

Logging In
). For full details on chat scripts, see

Chat Scripts
.

The uucico daemon will sleep for one second between attempts to
dial out on a modem. If your modem requires a longer wait period,
you must start your chat script with delays (\d in a send string).

The chat script will be read from and sent to the port specified
by the dial-device command for the port, if there is one.

The following escape addition escape sequences may appear in send
strings:

\D
send phone number without dialcode translation

uucp.info 104 / 166

\T
send phone number with dialcode translation

\M
do not require carrier

\m
require carrier (fail if not present)

See the description of the dialcodes file (see

Configuration File Names
) for a description of dialcode

translation. If the port does not support carrier, as set by the
carrier command in the port file, \M and \m are ignored.
If both the port and the dialer support carrier, as set by the
carrier command in the port file and the carrier command
in the dialer file, then every chat script implicitly begins with
\M and ends with \m. There is no default chat script
for dialers.

The following additional escape sequences may be used in
chat-program:

\D
phone number without dialcode translation

\T
phone number with dialcode translation

If the program changes the port in any way (e.g., sets parity) the
changes will be preserved during protocol negotiation, but once the
protocol is selected it will change the port settings.

dialtone STRING
A string to output when dialing the phone number which causes the
modem to wait for a secondary dial tone. This is used to
translate the = character in a phone number. The default is a
comma.

pause STRING
A string to output when dialing the phone number which causes the
modem to wait for 1 second. This is used to translate the -
character in a phone number. The default is a comma.

carrier BOOLEAN
An argument of true means that the dialer supports the modem
carrier signal. After the phone number is dialed, uucico will
require that carrier be on. One some systems, it will be able to
wait for it. If the argument is false, carrier will not be
required. The default is true.

carrier-wait NUMBER
If the port is supposed to wait for carrier, this may be used to
indicate how many seconds to wait. The default is 60 seconds.
Only some systems support waiting for carrier.

uucp.info 105 / 166

dtr-toggle BOOLEAN BOOLEAN
If the first argument is true, then DTR is toggled before using
the modem. This is only supported on some systems and some ports.
The second BOOLEAN need not be present; if it is, and it is true,
the program will sleep for 1 second after toggling DTR. The
default is to not toggle DTR.

complete-chat STRINGS
complete-chat-timeout NUMBER
complete-chat-fail STRING
complete-chat-seven-bit BOOLEAN
complete-chat-program STRINGS

These commands define a chat script (see
Chat Scripts
) which is run

when a call is finished normally. This allows the modem to be
reset. There is no default. No additional escape sequences may
be used.

complete STRING
This is a simple use of complete-chat. It is equivalent to complete-chat ""
STRING; this has the effect of sending STRING to the
modem when a call finishes normally.

abort-chat STRINGS
abort-chat-timeout NUMBER
abort-chat-fail STRING
abort-chat-seven-bit BOOLEAN
abort-chat-program STRINGS

These commands define a chat script (see
Chat Scripts
) to be run

when a call is aborted. They may be used to interrupt and reset
the modem. There is no default. No additional escape sequences
may be used.

abort STRING
This is a simple use of abort-chat. It is equivalent to abort-chat ""
STRING; this has the effect of sending STRING to the
modem when a call is aborted.

protocol-parameter CHARACTER STRINGS
Set protocol parameters, just like the protocol-parameter command
in the system configuration file or the port configuration file;
see

Protocol Selection
. These parameters take precedence, then

those for the port, then those for the system.

seven-bit BOOLEAN
This is only used during protocol negotiation; if it is true, it
forces selection of a protocol which works across a seven-bit
link. It does not prevent eight bit characters from being
transmitted. The default is false. It would be more common to
specify this for a port than for a dialer.

reliable BOOLEAN

uucp.info 106 / 166

This is only used during protocol negotiation; if it is false, it
forces selection of a protocol which works across an unreliable
communication link. The default is true.

half-duplex BOOLEAN [any type]
If the argument is true, it means that the dialer only supports
half-duplex connections. This only affects bidirectional
protocols, and causes them to not do bidirectional transfers.

1.80 uucp.info/UUCP Over TCP

UUCP Over TCP
=============

If your system has a Berkeley style socket library, or a System V
style TLI interface library, you can compile the code to permit making
connections over TCP. Specifying that a system should be reached via
TCP is easy, but nonobvious.

TCP Client
Connecting to Another System Over TCP

TCP Server
Running a TCP Server

1.81 uucp.info/TCP Client

Connecting to Another System Over TCP

If you are using the new style configuration files (see

Configuration Files
), add the line port type tcp to the entry in the

sys file. By default UUCP will get the port number by looking
up uucp in /etc/services; if the uucp service is not defined, port 540
will be used. You can set the port number to use with the command port service
XXX, where XXX can be either a number or a name to look
up in /etc/services. You can specify the address of the remote host
with address A.B.C; if you don’t give an address, the remote system
name will be used. You should give an explicit chat script for the
system when you use TCP; the default chat script begins with a carriage
return, which will not work with some UUCP TCP servers.

If you are using V2 configuration files, add a line like this to
L.sys:

uucp.info 107 / 166

SYS Any TCP uucp HOST.DOMAIN chat-script
This will make an entry for system SYS, to be called at any time,

over TCP, using port number uucp (as found in /etc/services; this may
be specified as a number), using remote host HOST.DOMAIN, with some
chat script.

If you are using HDB configuration files, add a line like this to
Systems:

SYS Any TCP - HOST.DOMAIN chat-script
and a line like this to Devices:

TCP uucp - -
You only need one line in Devices regardless of how many systems you

contact over TCP. This will make an entry for system SYS, to be called
at any time, over TCP, using port number uucp (as found in
/etc/services; this may be specified as a number), using
remote host HOST.DOMAIN, with some chat script.

1.82 uucp.info/TCP Server

Running a TCP Server

The uucico daemon may be run as a TCP server. To use the default
port number, which is a reserved port, uucico must be invoked by the
superuser (or it must be set user ID to the superuser, but I don’t
recommend doing that).

You must define a port, either using the port file (see
port File
),

if you are using the new configuration method, or with an entry in
Devices if you are using HDB; there is no way to define a port
using V2. If you are using HDB the port must be named TCP; a line as
shown above will suffice. You can then start uucico as uucico -p TCP
(after the -p, name the port; in HDB it must be TCP). This will wait
for incoming connections, and fork off a child for each one. Each
connection will be prompted with login: and Password:; the results will
be checked against the UUCP (not the system) password file (see

Configuration File Names
).

Another way to run a UUCP TCP server is to use the BSD uucpd program.

Yet another way to run a UUCP TCP server is to use inetd. Arrange
for inetd to start up uucico with the -l switch. This will cause
uucico to prompt with login: and Password: and check the
results against the UUCP (not the system) password file (you may want
to also use the -D switch to avoid a fork, which in this case is
unnecessary).

uucp.info 108 / 166

1.83 uucp.info/Security

Security
========

This discussion of UUCP security applies only to Unix. It is a bit
cursory; suggestions for improvement are solicited.

UUCP is traditionally not very secure. Taylor UUCP addresses some
security issues, but is still far from being a secure system.

If security is very important to you, then you should not permit any
external access to your computer, including UUCP. Any opening to the
outside world is a potential security risk.

When local users use UUCP to transfer files, Taylor UUCP can do
little to secure them from each other. You can allow somewhat increased
security by putting the owner of the UUCP programs (normally uucp) into
a separate group; the use of this is explained in the following
paragraphs, which refer to this separate group as uucp-group.

When the uucp program is invoked to copy a file to a remote system,
it will, by default, copy the file into the UUCP spool directory. When
the uux program is used, the -C switch must be used to copy the file
into the UUCP spool directory. In any case, once the file has been
copied into the spool directory, other local users will not be able to
access it.

When a file is requested from a remote system, UUCP will only permit
it to be placed in a directory which is writable by the requesting user.
The directory must also be writable by UUCP. A local user can create a
directory with a group of uucp-group and set the mode to permit group
write access. This will allow the file be requested without permitting
it to be viewed by any other user.

There is no provision for security for uucp requests (as opposed to
uux requests) made by a user on a remote system. A file sent
over by a remote request may only be placed in a directory which is
world writable, and the file will be world readable and writable. This
will permit any local user to destroy or replace the contents of the
file. A file requested by a remote system must be world readable, and
the directory it is in must be world readable. Any local user will be
able to examine, although not necessarily modify, the file before it is
sent.

There are some security holes and race conditions that apply to the
above discussion which I will not elaborate on. They are not hidden
from anybody who reads the source code, but they are somewhat technical
and difficult (though scarcely impossible) to exploit. Suffice it to
say that even under the best of conditions UUCP is not completely
secure.

For many sites, security from remote sites is a more important
consideration. Fortunately, Taylor UUCP does provide some support in
this area.

uucp.info 109 / 166

The greatest security is provided by always dialing out to the other
site. This prevents anybody from pretending to be the other site. Of
course, only one side of the connection can do this.

If remote dialins must be permitted, then it is best if the dialin
line is used only for UUCP. If this is the case, then you should
create a call-in password file (see

Configuration File Names
) and let

uucico do its own login prompting. For example, to let remote
sites log in on a port named entry in the port file (see

port File
),

you might invoke uucico -e -p entry. This would cause uucico to enter
an endless loop of login prompts and daemon executions. The advantage
of this approach is that even if remote users break into the system by
guessing or learning the password, they will only be able to do
whatever uucico permits them to do. They will not be able to start a
shell on your system.

If remote users can dial in and log on to your system, then you have
a security hazard more serious than that posed by UUCP. But then, you
probably knew that already.

Once your system has connected with the remote UUCP, there is a fair
amount of control you can exercise. You can use the remote-send and
remote-receive commands to control the directories the remote
UUCP can access. You can use the request command to prevent the remote
UUCP from making any requests of your system at all; however, if you do
this it will not even be able to send you mail or news. If you do
permit remote requests, you should be careful to restrict what commands
may be executed at the remote system’s request. The default is rmail
and rnews, which will suffice for most systems.

If different remote systems call in and they must be granted
different privileges (perhaps some systems are within the same
organization and some are not) then the called-login command should be
used for each system to require that they use different login names.
Otherwise, it would be simple for a remote system to use the myname
command and pretend to be a different system. The sequence command can
be used to detect when one system pretended to be another, but, since
the sequence numbers must be reset manually after a failed handshake,
this can sometimes be more trouble than it’s worth.

1.84 uucp.info/Protocols

UUCP Protocol Internals

This chapter describes how the various UUCP protocols work, and
discusses some other internal UUCP issues.

This chapter is quite technical. You do not need to understand it,

uucp.info 110 / 166

or even read it, in order to use Taylor UUCP. It is intended for people
who are interested in how the UUCP code works.

The information in this chapter is posted monthly to the Usenet
newsgroups comp.mail.uucp, news.answers, and comp.answers. The posting
is available from any news.answers archive site, such as rtfm.mit.edu.
If you plan to use this information to write a UUCP program, please
make sure you get the most recent version of the posting, in case there
have been any corrections.

UUCP Protocol Sources
Sources for UUCP Protocol Information

UUCP Grades
UUCP Grades

UUCP Lock Files
UUCP Lock Files

Execution File Format
Execution File Format

UUCP Protocol
UUCP Protocol

g Protocol
g protocol

f Protocol
f protocol

t Protocol
t protocol

e Protocol
e protocol

Big G Protocol
G protocol

i Protocol
i protocol

j Protocol
j protocol

x Protocol
x protocol

y Protocol
y protocol

d Protocol
d protocol

uucp.info 111 / 166

h Protocol
h protocol

v Protocol
v protocol

1.85 uucp.info/UUCP Protocol Sources

UUCP Protocol Sources
=====================

"Unix-to-Unix Copy Program," said PDP-1. "You will never find a
more wretched hive of bugs and flamers. We must be cautious."

--DECWars

I took a lot of the information from Jamie E. Hanrahan’s paper in the
Fall 1990 DECUS Symposium, and from ‘Managing UUCP and Usenet’ by Tim
O’Reilly and Grace Todino (with contributions by several other people).
The latter includes most of the former, and is published by

O’Reilly & Associates, Inc.
103 Morris Street, Suite A
Sebastopol, CA 95472

It is currently in its tenth edition. The ISBN number is
0-937175-93-5.

Some information is originally due to a Usenet article by Chuck
Wegrzyn. The information on execution files comes partially from Peter
Honeyman. The information on the g protocol comes partially from a
paper by G.L. Chesson of Bell Laboratories, partially from Jamie E.
Hanrahan’s paper, and partially from source code by John Gilmore. The
information on the f protocol comes from the source code by Piet
Berteema. The information on the t protocol comes from the source code
by Rick Adams. The information on the e protocol comes from a Usenet
article by Matthias Urlichs. The information on the d protocol comes
from Jonathan Clark, who also supplied information about QFT. The
UUPlus information comes straight from Christopher J. Ambler, of UUPlus
Development; it applies to version 1.52 and up of the shareware version
of UUPlus Utilities, called FSUUCP 1.52, but referred to in this
article as UUPlus.

Although there are few books about UUCP, there are many about
networks and protocols in general. I recommend two non-technical books
which describe the sorts of things that are available on the network:
‘The Whole Internet’, by Ed Krol, and ‘Zen and the Art of the
Internet’, by Brendan P. Kehoe. Good technical discussions of
networking issues can be found in ‘Internetworking with TCP/IP’, by
Douglas E. Comer and David L. Stevens and in ‘Design and Validation of
Computer Protocols’ by Gerard J. Holzmann.

uucp.info 112 / 166

1.86 uucp.info/UUCP Grades

UUCP Grades
===========

Modern UUCP packages support a priority grade for each command. The
grades generally range from A (the highest) to Z followed by a to z.
Some UUCP packages (including Taylor UUCP) also support 0 to 9 before
A. Some UUCP packages may permit any ASCII character as a
grade.

On Unix, these grades are encoded in the name of the command file
created by uucp or uux. A command file name generally has the form
C.nnnngssss where nnnn is the remote system name for which the
command is queued, g is a single character grade, and ssss is a four
character sequence number. For example, a command file created for the
system airs at grade Z might be named C.airsZ2551.

The remote system name will be truncated to seven characters, to
ensure that the command file name will fit in the 14 character file
name limit of the traditional Unix file system. UUCP packages which
have no other means of distinguishing which command files are intended
for which systems thus require all systems they connect to to have
names that are unique in the first seven characters. Some UUCP
packages use a variant of this format which truncates the system name
to six characters. HDB and Taylor UUCP use a different spool directory
format, which allows up to fourteen characters to be used for each
system name.

The sequence number in the command file name may be a decimal
integer, or it may be a hexadecimal integer, or it may contain any
alphanumeric character. Different UUCP packages are different. Taylor
UUCP uses any alphanumeric character.

UUPlus Utilities (as FSUUCP, a shareware DOS based UUCP and news
package) uses up to 8 characters for file names in the spool (this is a
DOS file system limitation; actually, with the extension, 11 characters
are available, but FSUUCP reserves that for future use). FSUUCP
defaults mail to grade D, and news to grade N, except that when the
grade of incoming mail can be determined, that grade is preserved if
the mail is forwarded to another system. The default grades may be
changed by editing the LIB/MAILRC file for mail, or the UUPLUS.CFG file
for news.

UUPC/extended for DOS, OS/2 and Windows NT handles mail at grade C,
news at grade d, and file transfers at grade n. The UUPC/extended UUCP
and RMAIL commands accept grades to override the default, the others do
not.

I do not know how command grades are handled in other non-Unix UUCP
packages.

Modern UUCP packages allow you to restrict file transfer by grade
depending on the time of day. Typically this is done with a line in
the Systems (or L.sys) file like this:

airs Any/Z,Any2305-0855 ...

uucp.info 113 / 166

This allows grades Z and above to be transferred at any time. Lower
grades may only be transferred at night. I believe that this grade
restriction applies to local commands as well as to remote commands,
but I am not sure. It may only apply if the UUCP package places the
call, not if it is called by the remote system.

Taylor UUCP can use the timegrade and call-timegrade commands to
achieve the same effect. See

When to Call
. It supports the above

format when reading Systems or L.sys.

UUPC/extended provides the symmetricgrades option to announce the
current grade in effect when calling the remote system.

UUPlus allows specification of the highest grade accepted on a
per-call basis with the -g option in UUCICO.

This sort of grade restriction is most useful if you know what grades
are being used at the remote site. The default grades used depend on
the UUCP package. Generally uucp and uux have different defaults. A
particular grade can be specified with the -g option to uucp or uux.
For example, to request execution of rnews on airs with grade d, you
might use something like

uux -gd - airs!rnews < article

Uunet queues up mail at grade C, but increases the grade based on
the size. News is queued at grade d, and file transfers at grade n.
The example above would allow mail (below some large size) to be
received at any time, but would only permit news to be transferred at
night.

1.87 uucp.info/UUCP Lock Files

UUCP Lock Files
===============

This discussion applies only to Unix. I have no idea how UUCP locks
ports on other systems.

UUCP creates files to lock serial ports and systems. On most, if not
all, systems, these same lock files are also used by cu to coordinate
access to serial ports. On some systems getty also uses these lock
files, often under the name uugetty.

The lock file normally contains the process ID of the locking
process. This makes it easy to determine whether a lock is still
valid. The algorithm is to create a temporary file and then link it to
the name that must be locked. If the link fails because a file with
that name already exists, the existing file is read to get the process
ID. If the process still exists, the lock attempt fails. Otherwise
the lock file is deleted and the locking algorithm is retried.

uucp.info 114 / 166

Older UUCP packages put the lock files in the main UUCP spool
directory, /usr/spool/uucp. HDB UUCP generally puts the lock files in a
directory of their own, usually /usr/spool/locks or /etc/locks.

The original UUCP lock file format encodes the process ID as a four
byte binary number. The order of the bytes is host-dependent. HDB UUCP
stores the process ID as a ten byte ASCII decimal number, with a
trailing newline. For example, if process 1570 holds a lock file, it
would contain the eleven characters space, space, space, space, space,
space, one, five, seven, zero, newline. Some versions of UUCP add a
second line indicating which program created the lock (uucp, cu, or
getty/uugetty). I have also seen a third type of UUCP lock
file which does not contain the process ID at all.

The name of the lock file is traditionally LCK.. followed by the
base name of the device. For example, to lock /dev/ttyd0 the file
LCK..ttyd0 would be created. On SCO Unix, the lock file name
is always forced to lower case even if the device name has upper case
letters.

System V Release 4 UUCP names the lock file using the major and minor
device numbers rather than the device name. The file is named
LK.XXX.YYY.ZZZ, where XXX, YYY and
ZZZ are all three digit decimal numbers. XXX is the major
device number of the device holding the directory holding the device
file (e.g., /dev). YYY is the major device number of the device file
itself. ZZZ is the minor device number of the device file itself. If
s holds the result of passing the device to the stat system
call (e.g., stat ("/dev/ttyd0", &s)), the following line of C code will
print out the corresponding lock file name:

printf ("LK.%03d.%03d.%03d", major (s.st_dev),
major (s.st_rdev), minor (s.st_rdev));

The advantage of this system is that even if there are several links
to the same device, they will all use the same lock file name.

When two or more instances of uuxqt are executing, some sort of
locking is needed to ensure that a single execution job is only started
once. I don’t know how most UUCP packages deal with this. Taylor UUCP
uses a lock file for each execution job. The name of the lock file is
the same as the name of the X.* file, except that the initial X is
changed to an L. The lock file holds the process ID as described above.

1.88 uucp.info/Execution File Format

Execution File Format
=====================

UUCP X.* files control program execution. They are created by uux.
They are transferred between systems just like any other file. The
uuxqt daemon reads them to figure out how to execute the job
requested by uux.

An X.* file is simply a text file. The first character of each line
is a command, and the remainder of the line supplies arguments. The

uucp.info 115 / 166

following commands are defined:

C command
This gives the command to execute, including the program and all
arguments. For example, rmail ian@airs.com.

U user system
This names the user who requested the command, and the system from
which the request came.

I standard-input
This names the file from which standard input is taken. If no
standard input file is given, the standard input will probably be
attached to /dev/null. If the standard input file is not from the
system on which the execution is to occur, it will also appear in
an F command.

O standard-output [system]
This names the standard output file. The optional second argument
names the system to which the file should be sent. If there is no
second argument, the file should be created on the executing
system.

F required-file [filename-to-use]
The F command can appear multiple times. Each F command names a
file which must exist before the execution can proceed. This will
usually be a file which is transferred from the system on which
uux was executed, but it can also be a file from the
local system or some other system. If the file is not from the
local system, then the command will usually name a file in the
spool directory. If the optional second argument appears, then
the file should be copied to the execution directory under that
name. This is necessary for any file other than the standard
input file. If the standard input file is not from the local
system, it will appear in both an F command and an I command.

R requestor-address
This is the address to which mail about the job should be sent.
It is relative to the system named in the U command. If the R
command does not appear, then mail is sent to the user named in the
U command.

Z
This command takes no arguments. It means that a mail message
should be sent if the command failed. This is the default
behaviour for most modern UUCP packages, and for them the Z
command does not actually do anything.

N
This command takes no arguments. It means that no mail message
should be sent, even if the command failed.

n
This command takes no arguments. It means that a mail message
should be sent if the command succeeded. Normally a message is
sent only if the command failed.

uucp.info 116 / 166

B
This command takes no arguments. It means that the standard input
should be returned with any error message. This can be useful in
cases where the input would otherwise be lost.

e
This command takes no arguments. It means that the command should
be processed with /bin/sh. For some packages this is the default
anyhow. Most packages will refuse to execute complex commands or
commands containing wildcards, because of the security holes this
opens.

E
This command takes no arguments. It means that the command should
be processed with the execve system call. For some packages this
is the default anyhow.

M status-file
This command means that instead of mailing a message, the message
should be copied to the named file on the system named by the U
command.

comment
This command is ignored, as is any other unrecognized command.

Here is an example. Given the following command executed on system
test1

uux - test2!cat - test2!~ian/bar !qux ’>~/gorp’
(this is only an example, as most UUCP systems will not permit the

cat command to be executed) Taylor UUCP will produce something like the
following X. file:

U ian test1
F D.test1N003r qux
O /usr/spool/uucppublic test1
F D.test1N003s
I D.test1N003s
C cat - ~ian/bar qux

The standard input will be read into a file and then transferred to
the file D.test1N003s on system test2. The file qux will be
transferred to D.test1N003r on system test2. When the command is
executed, the latter file will be copied to the execution directory
under the name qux. Note that since the file ~ian/bar is already on
the execution system, no action need be taken for it. The standard
output will be collected in a file, then copied to the directory
/usr/spool/uucppublic on the system test1.

1.89 uucp.info/UUCP Protocol

UUCP Protocol
=============

The UUCP protocol is a conversation between two UUCP packages. A
UUCP conversation consists of three parts: an initial handshake, a
series of file transfer requests, and a final handshake.

uucp.info 117 / 166

The Initial Handshake
The Initial Handshake

UUCP Protocol Commands
UUCP Protocol Commands

The Final Handshake
The Final Handshake

1.90 uucp.info/The Initial Handshake

The Initial Handshake

Before the initial handshake, the caller will usually have logged in
the called machine and somehow started the UUCP package there. On Unix
this is normally done by setting the shell of the login name used to
/usr/lib/uucp/uucico.

All messages in the initial handshake begin with a ^P (a byte with
the octal value \020) and end with a null byte (\000). A few systems
end these messages with a line feed character (\012) instead of a null
byte; the examples below assume a null byte is being used.

Some options below are supported by QFT, which stands for Queued File
Transfer, and is (or was) an internal Bell Labs version of UUCP.

Taylor UUCP size negotiation was introduced by Taylor UUCP, and is
also supported by DOS based UUPlus and Amiga based wUUCP and UUCP-1.17.

The initial handshake goes as follows. It is begun by the called
machine.

called: \020Shere=hostname\000
The hostname is the UUCP name of the called machine. Older UUCP
packages do not output it, and simply send \020Shere\000.

caller: \020Shostname options\000
The hostname is the UUCP name of the calling machine. The
following options may appear (or there may be none):

-QSEQ
Report sequence number for this conversation. The sequence
number is stored at both sites, and incremented after each
call. If there is a sequence number mismatch, something has
gone wrong (somebody may have broken security by pretending
to be one of the machines) and the call is denied. If the
sequence number changes on one of the machines, perhaps
because of an attempted breakin or because a disk backup was
restored, the sequence numbers on the two machines must be

uucp.info 118 / 166

reconciled manually.

-xLEVEL
Requests the called system to set its debugging level to the
specified value. This is not supported by all systems.

-pGRADE
-vgrade=GRADE

Requests the called system to only transfer files of the
specified grade or higher. This is not supported by all
systems. Some systems support -p, some support -vgrade=.
UUPlus allows either -p or -v to be specified on a per-system
basis in the SYSTEMS file (gradechar option).

-R
Indicates that the calling UUCP understands how to restart
failed file transmissions. Supported only by System V
Release 4 UUCP, QFT, and Taylor UUCP.

-ULIMIT
Reports the ulimit value of the calling UUCP. The limit is
specified as a base 16 number in C notation (e.g.,
-U0x1000000). This number is the number of 512 byte
blocks in the largest file which the calling UUCP can create.
The called UUCP may not transfer a file larger than this.
Supported only by System V Release 4 UUCP, QFT and UUPlus.
UUPlus reports the lesser of the available disk space on the
spool directory drive and the ulimit variable in UUPLUS.CFG.
Taylor UUCP understands this option, but does not generate it.

-N[NUMBER]
Indicates that the calling UUCP understands the Taylor UUCP
size negotiation extension. Not supported by traditional
UUCP packages. Supported by UUPlus. The optional number is
a bitmask of features supported by the calling UUCP, and is
described below.

called: \020ROK\000
There are actually several possible responses.
ROK

The calling UUCP is acceptable, and the handshake proceeds to
the protocol negotiation. Some options may also appear; see
below.

ROKN[NUMBER]
The calling UUCP is acceptable, it specified -N, and the
called UUCP also understands the Taylor UUCP size limiting
extensions. The optional number is a bitmask of features
supported by the called UUCP, and is described below.

RLCK
The called UUCP already has a lock for the calling UUCP,
which normally indicates the two machines are already
communicating.

RCB
The called UUCP will call back. This may be used to avoid

uucp.info 119 / 166

impostors (but only one machine out of each pair should call
back, or no conversation will ever begin).

RBADSEQ
The call sequence number is wrong (see the -Q discussion
above).

RLOGIN
The calling UUCP is using the wrong login name.

RYou are unknown to me
The calling UUCP is not known to the called UUCP, and the
called UUCP does not permit connections from unknown systems.
Some versions of UUCP just drop the line rather than sending
this message.

If the response is ROK, the following options are supported by
System V Release 4 UUCP and QFT.
-R

The called UUCP knows how to restart failed file
transmissions.

-ULIMIT
Reports the ulimit value of the called UUCP. The limit is
specified as a base 16 number in C notation. This number is
the number of 512 byte blocks in the largest file which the
called UUCP can create. The calling UUCP may not send a file
larger than this. Also supported by UUPlus. Taylor UUCP
understands this option, but does not generate it.

-xLEVEL
I’m not sure just what this means. It may request the
calling UUCP to set its debugging level to the specified
value.

If the response is not ROK (or ROKN) both sides hang up the phone,
abandoning the call.

called: \020Pprotocols\000
Note that the called UUCP outputs two strings in a row. The
protocols string is a list of UUCP protocols supported by the
caller. Each UUCP protocol has a single character name. These
protocols are discussed in more detail later in this document.
For example, the called UUCP might send \020Pgf\000.

caller: \020Uprotocol\000
The calling UUCP selects which protocol to use out of the protocols
offered by the called UUCP. If there are no mutually supported
protocols, the calling UUCP sends \020UN\000 and both sides hang
up the phone. Otherwise the calling UUCP sends something like
\020Ug\000.

Most UUCP packages will consider each locally supported protocol in
turn and select the first one supported by the called UUCP. With some
versions of HDB UUCP, this can be modified by giving a list of protocols
after the device name in the Devices file or the Systems file. For
example, to select the e protocol in Systems,

uucp.info 120 / 166

airs Any ACU,e ...
or in Devices,

ACU,e ttyXX ...
Taylor UUCP provides the protocol command which may be used either

for a system (see
Protocol Selection
) or a port (see
port File
).

UUPlus allows specification of the protocol string on a per-system basis
in the SYSTEMS file.

The optional number following a -N sent by the calling system, or an
ROKN sent by the called system, is a bitmask of features
supported by the UUCP package. The optional number was introduced in
Taylor UUCP version 1.04. The number is sent as an octal number with a
leading zero. The following bits are currently defined. A missing
number should be taken as 011.

01
UUCP supports size negotiation.

02
UUCP supports file restart.

04
UUCP supports the E command.

010
UUCP requires the file size in the S and R commands to be in base
10. This bit is used by default if no number appears, but should
not be explicitly sent.

020
UUCP expects a dummy string between the notify field and the size
field in an S command. This is true of SVR4 UUCP. This bit
should not be used.

After the protocol has been selected and the initial handshake has
been completed, both sides turn on the selected protocol. For some
protocols (notably g) a further handshake is done at this point.

1.91 uucp.info/UUCP Protocol Commands

UUCP Protocol Commands

Each protocol supports a method for sending a command to the remote
system. This method is used to transmit a series of commands between
the two UUCP packages. At all times, one package is the master and the
other is the slave. Initially, the calling UUCP is the master.

If a protocol error occurs during the exchange of commands, both

uucp.info 121 / 166

sides move immediately to the final handshake.

The master will send one of five commands: S, R, X, E, or H.

Any file name referred to below is either an absolute file name
beginning with /, a public directory file name beginning with ~/, a
file name relative to a user’s home directory beginning with ~USER/,
or a spool directory file name. File names in the spool directory are
not absolute, but instead are converted to file names within the spool
directory by UUCP. They always begin with C. (for a command file
created by uucp or uux), D. (for a data file created by uucp, uux or by
an execution, or received from another system for an execution), or X.
(for an execution file created by uux or received from another system).

The S Command
The S Command

The R Command
The R Command

The X Command
The X Command

The E Command
The E Command

The H Command
The H Command

1.92 uucp.info/The S Command

The S Command
.............

master: S FROM TO USER -OPTIONS TEMP MODE NOTIFY SIZE
The S and the - are literal characters. This is a request by the
master to send a file to the slave.

FROM
The name of the file to send. If the C option does not
appear in OPTIONS, the master will actually open and send
this file. Otherwise the file has been copied to the spool
directory, where it is named TEMP. The slave ignores this
field unless TO is a directory, in which case the basename of
FROM will be used as the file name. If FROM is a
spool directory filename, it must be a data file created for
or by an execution, and must begin with D..

TO
The name to give the file on the slave. If this field names
a directory the file is placed within that directory with the

uucp.info 122 / 166

basename of FROM. A name ending in / is taken to be a
directory even if one does not already exist with that name.
If TO begins with X., an execution file will be created on
the slave. Otherwise, if TO begins with D. it names a data
file to be used by some execution file. Otherwise, TO should
not be in the spool directory.

USER
The name of the user who requested the transfer.

OPTIONS
A list of options to control the transfer. The following
options are defined (all options are single characters):
C

The file has been copied to the spool directory (the
master should use TEMP rather than FROM).

c
The file has not been copied to the spool directory
(this is the default).

d
The slave should create directories as necessary (this
is the default).

f
The slave should not create directories if necessary,
but should fail the transfer instead.

m
The master should send mail to USER when the transfer is
complete.

n
The slave should send mail to NOTIFY when the transfer is
complete.

TEMP
If the C option appears in OPTIONS, this names the file to be
sent. Otherwise if FROM is in the spool directory, TEMP is
the same as FROM. Otherwise TEMP may be a dummy string, such
as D.0. After the transfer has been succesfully completed,
the master will delete the file TEMP.

MODE
This is an octal number giving the mode of the file on the
master. If the file is not in the spool directory, the slave
will always create it with mode 0666, except that if (MODE &
0111) is not zero (the file is executable), the slave will
create the file with mode 0777. If the file is in the spool
directory, some UUCP packages will use the algorithm above
and some will always create the file with mode 0600. This
field is ignored by UUPlus, since it is meaningless on DOS;
UUPlus uses 0666 for outgoing files.

NOTIFY
This field may not be present, and in any case is only

uucp.info 123 / 166

meaningful if the n option appears in OPTIONS. If the n
option appears, then, when the transfer is successfully
completed, the slave will send mail to NOTIFY, which must be
a legal mailing address on the slave. If a SIZE field will
appear but the n option does not appear, NOTIFY will always
be present, typically as the string dummy or simply a pair of
double quotes.

SIZE
This field is only present when doing Taylor UUCP or SVR4
UUCP size negotiation. It is the size of the file in bytes.
Taylor UUCP version 1.03 sends the size as a decimal integer,
while versions 1.04 and up, and all other UUCP packages that
support size negotiation, send the size in base 16 with a
leading 0x.

The slave then responds with an S command response.

SY START
The slave is willing to accept the file, and file transfer
begins. The START field will only be present when using file
restart. It specifies the byte offset into the file at which
to start sending. If this is a new file, START will be 0x0.

SN2
The slave denies permission to transfer the file. This can
mean that the destination directory may not be accessed, or
that no requests are permitted. It implies that the file
transfer will never succeed.

SN4
The slave is unable to create the necessary temporary file.
This implies that the file transfer might succeed later.

SN6
This is only used by Taylor UUCP size negotiation. It means
that the slave considers the file too large to transfer at
the moment, but it may be possible to transfer it at some
other time.

SN7
This is only used by Taylor UUCP size negotiation. It means
that the slave considers the file too large to ever transfer.

SN8
This is only used by Taylor UUCP. It means that the file was
already received in a previous conversation. This can happen
if the receive acknowledgement was lost after it was sent by
the receiver but before it was received by the sender.

SN9
This is only used by Taylor UUCP (versions 1.05 and up) and
UUPlus (versions 2.0 and up). It means that the remote
system was unable to open another channel (see the discussion
of the i protocol for more information about channels). This
implies that the file transfer might succeed later.

uucp.info 124 / 166

SN10
This is reportedly used by SVR4 UUCP to mean that the file
size is too large.

If the slave responds with SY, a file transfer begins. When the
file transfer is complete, the slave sends a C command response.

CY
The file transfer was successful.

CYM
The file transfer was successful, and the slave wishes to
become the master; the master should send an H command,
described below.

CN5
The temporary file could not be moved into the final
location. This implies that the file transfer will never
succeed.

After the C command response has been received (in the SY case) or
immediately (in an SN case) the master will send another command.

1.93 uucp.info/The R Command

The R Command
.............

master: R FROM TO USER -OPTIONS SIZE
The R and the - are literal characters. This is a request by the
master to receive a file from the slave. I do not know how SVR4
UUCP or QFT implement file transfer restart in this case.

FROM
This is the name of the file on the slave which the master
wishes to receive. It must not be in the spool directory,
and it may not contain any wildcards.

TO
This is the name of the file to create on the master. I do
not believe that it can be a directory. It may only be in
the spool directory if this file is being requested to
support an execution either on the master or on some system
other than the slave.

USER
The name of the user who requested the transfer.

OPTIONS
A list of options to control the transfer. The following
options are defined (all options are single characters):
d

The master should create directories as necessary (this
is the default).

uucp.info 125 / 166

f
The master should not create directories if necessary,
but should fail the transfer instead.

m
The master should send mail to USER when the transfer is
complete.

SIZE
This only appears if Taylor UUCP size negotiation is being
used. It specifies the largest file which the master is
prepared to accept (when using SVR4 UUCP or QFT, this was
specified in the -U option during the initial handshake).

The slave then responds with an R command response. UUPlus does
not support R requests, and always responds with RN2.

RY MODE [SIZE]
The slave is willing to send the file, and file transfer
begins. The MODE argument is the octal mode of the file on
the slave. The master treats this just as the slave does the
MODE argument in the send command, q.v. I am told
that SVR4 UUCP sends a trailing SIZE argument. For some
versions of BSD UUCP, the MODE argument may have a trailing M
character (e.g., RY 0666M). This means that the slave wishes
to become the master.

RN2
The slave is not willing to send the file, either because it
is not permitted or because the file does not exist. This
implies that the file request will never succeed.

RN6
This is only used by Taylor UUCP size negotiation. It means
that the file is too large to send, either because of the
size limit specifies by the master or because the slave
considers it too large. The file transfer might succeed
later, or it might not (this may be cleared up in a later
release of Taylor UUCP).

RN9
This is only used by Taylor UUCP (versions 1.05 and up) and
FSUUCP (versions 1.5 and up). It means that the remote
system was unable to open another channel (see the discussion
of the i protocol for more information about channels). This
implies that the file transfer might succeed later.

If the slave responds with RY, a file transfer begins. When the
file transfer is complete, the master sends a C command. The
slave pretty much ignores this, although it may log it.

CY
The file transfer was successful.

CN5
The temporary file could not be moved into the final location.

uucp.info 126 / 166

After the C command response has been sent (in the RY case) or
immediately (in an RN case) the master will send another command.

1.94 uucp.info/The X Command

The X Command
.............

master: X FROM TO USER -OPTIONS
The X and the - are literal characters. This is a request by the
master to, in essence, execute uucp on the slave. The slave
should execute uucp FROM TO.

FROM
This is the name of the file or files on the slave which the
master wishes to transfer. Any wildcards are expanded on the
slave. If the master is requesting that the files be
transferred to itself, the request would normally contain
wildcard characters, since otherwise an R command would
suffice. The master can also use this command to request
that the slave transfer files to a third system.

TO
This is the name of the file or directory to which the files
should be transferred. This will normally use a UUCP name.
For example, if the master wishes to receive the files
itself, it would use master!path.

USER
The name of the user who requested the transfer.

OPTIONS
A list of options to control the transfer. It is not clear
which, if any, options are supported by most UUCP packages.

The slave then responds with an X command response. FSUUCP does
not support X requests, and always responds with XN.

XY
The request was accepted, and the appropriate file transfer
commands have been queued up for later processing.

XN
The request was denied. No particular reason is given.

In either case, the master will then send another command.

1.95 uucp.info/The E Command

uucp.info 127 / 166

The E Command
.............

master: E FROM TO USER -OPTIONS TEMP MODE NOTIFY SIZE COMMAND
The E command is only supported by Taylor UUCP 1.04 and up. It is
used to make an execution request without requiring a separate X.*
file. See

Execution File Format
. It is only used when the

command to be executed requires a single input file which is
passed to it as standard input.

All the fields have the same meaning as they do for an S command,
except for OPTIONS and COMMAND.

OPTIONS
A list of options to control the transfer. The following
options are defined (all options are single characters):
C

The file has been copied to the spool directory (the
master should use TEMP rather than FROM).

c
The file has not been copied to the spool directory
(this is the default).

N
No mail message should be sent, even if the command
fails. This is the equivalent of the N command in an
X.* file.

Z
A mail message should be sent if the command fails (this
is generally the default in any case). This is the
equivalent of the Z command in an X.* file.

R
Mail messages about the execution should be sent to the
address in the NOTIFY field. This is the equivalent of
the R command in an X.* file.

e
The execution should be done with /bin/sh. This is the
equivalent of the e command in an X.* file.

COMMAND
The command which should be executed. This is the equivalent
of the C command in an X.* file.

The slave then responds with an E command response. These are the
same as the S command responses, but the initial character is E
rather than S.

If the slave responds with EY, the file transfer begins. When the
file transfer is complete, the slave sends a C command response,
just as for the S command. After a successful file transfer, the

uucp.info 128 / 166

slave is responsible for arranging for the command to be executed.
The transferred file is passed as standard input, as though it
were named in the I and F commands of an X.* file.

After the C command response has been received (in the EY case) or
immediately (in an EN case) the master will send another command.

1.96 uucp.info/The H Command

The H Command
.............

master: H
This is used by the master to hang up the connection. The slave
will respond with an H command response.

HY
The slave agrees to hang up the connection. In this case the
master sends another HY command. In some UUCP packages the
slave will then send a third HY command. At this point the
protocol is shut down, and the final handshake is begun.

HN
The slave does not agree to hang up. In this case the master
and the slave exchange roles. The next command will be sent
by the former slave, which is the new master. The roles may
be reversed several times during a single connection.

1.97 uucp.info/The Final Handshake

The Final Handshake

After the protocol has been shut down, the final handshake is
performed. This handshake has no real purpose, and some UUCP packages
simply drop the connection rather than do it (in fact, some will drop
the connection immediately after both sides agree to hangup, without
even closing down the protocol).

caller: \020OOOOOO\000
called: \020OOOOOOO\000

That is, the calling UUCP sends six O characters and the called UUCP
replies with seven O characters. Some UUCP packages always send six O
characters.

1.98 uucp.info/g Protocol

uucp.info 129 / 166

UUCP g Protocol
===============

The g protocol is a packet based flow controlled error correcting
protocol that requires an eight bit clear connection. It is the
original UUCP protocol, and is supported by all UUCP implementations.
Many implementations of it are only able to support small window and
packet sizes, specifically a window size of 3 and a packet size of 64
bytes, but the protocol itself can support up to a window size of 7 and
a packet size of 4096 bytes. Complaints about the inefficiency of the
g protocol generally refer to specific implementations, rather
than to the correctly implemented protocol.

The g protocol was originally designed for general packet drivers,
and thus contains some features that are not used by UUCP, including an
alternate data channel and the ability to renegotiate packet and window
sizes during the communication session.

The g protocol is spoofed by many Telebit modems. When spoofing is
in effect, each Telebit modem uses the g protocol to communicate with
the attached computer, but the data between the modems is sent using a
Telebit proprietary error correcting protocol. This allows for very
high throughput over the Telebit connection, which, because it is
half-duplex, would not normally be able to handle the g protocol very
well at all. When a Telebit is spoofing the g protocol, it forces the
packet size to be 64 bytes and the window size to be 3.

This discussion of the g protocol explains how it works, but does
not discuss useful error handling techniques. Some discussion of this
can be found in Jamie E. Hanrahan’s paper, cited above (see

UUCP Protocol Sources
).

All g protocol communication is done with packets. Each packet
begins with a six byte header. Control packets consist only of the
header. Data packets contain additional data.

The header is as follows:

\020
Every packet begins with a ^P.

K (1 <= K <= 9)
The K value is always 9 for a control packet. For a data packet,
the K value indicates how much data follows the six byte header.
The amount of data is 2 ** (K + 4), where ** indicates
exponentiation. Thus a K value of 1 means 32 data bytes and a K
value of 8 means 4096 data bytes. The K value for a data packet
must be between 1 and 8 inclusive.

checksum low byte
checksum high byte

The checksum value is described below.

control byte

uucp.info 130 / 166

The control byte indicates the type of packet, and is described
below.

xor byte
This byte is the xor of K, the checksum low byte, the checksum
high byte and the control byte (i.e., the second, third, fourth and
fifth header bytes). It is used to ensure that the header data is
valid.

The control byte in the header is composed of three bit fields,
referred to here as TT (two bits), XXX (three bits) and YYY (three
bits). The control is TT XXX YYY, or (TT << 6) + (XXX << 3) + YYY.

The TT field takes on the following values:

0
This is a control packet. In this case the K byte in the header
must be 9. The XXX field indicates the type of control packet;
these types are described below.

1
This is an alternate data channel packet. This is not used by
UUCP.

2
This is a data packet, and the entire contents of the attached data
field (whose length is given by the K byte in the header) are
valid. The XXX and YYY fields are described below.

3
This is a short data packet. Let the length of the data field (as
given by the K byte in the header) be L. Let the first byte in
the data field be B1. If B1 is less than 128 (if the most
significant bit of B1 is 0), then there are L - B1 valid bytes of
data in the data field, beginning with the second byte. If B1 >=
128, let B2 be the second byte in the data field. Then there
are L - ((B1 & 0x7f) + (B2 << 7)) valid bytes of data in the data
field, beginning with the third byte. In all cases L bytes of
data are sent (and all data bytes participate in the checksum
calculation) but some of the trailing bytes may be dropped by the
receiver. The XXX and YYY fields are described below.

In a data packet (short or not) the XXX field gives the sequence
number of the packet. Thus sequence numbers can range from 0 to 7,
inclusive. The YYY field gives the sequence number of the last
correctly received packet.

Each communication direction uses a window which indicates how many
unacknowledged packets may be transmitted before waiting for an
acknowledgement. The window may range from 1 to 7, and may be different
in each direction. For example, if the window is 3 and the last packet
acknowledged was packet number 6, packet numbers 7, 0 and 1 may be sent
but the sender must wait for an acknowledgement before sending packet
number 2. This acknowledgement could come as the YYY field of a data
packet, or as the YYY field of a RJ or RR control packet (described
below).

uucp.info 131 / 166

Each packet must be transmitted in order (the sender may not skip
sequence numbers). Each packet must be acknowledged, and each packet
must be acknowledged in order.

In a control packet, the XXX field takes on the following values:

1 CLOSE
The connection should be closed immediately. This is typically
sent when one side has seen too many errors and wants to give up.
It is also sent when shutting down the protocol. If an unexpected CLOSE
packet is received, a CLOSE packet should be sent in reply and the
g protocol should halt, causing UUCP to enter the final
handshake.

2 RJ or NAK
The last packet was not received correctly. The YYY field
contains the sequence number of the last correctly received packet.

3 SRJ
Selective reject. The YYY field contains the sequence number of a
packet that was not received correctly, and should be
retransmitted. This is not used by UUCP, and most implementations
will not recognize it.

4 RR or ACK
Packet acknowledgement. The YYY field contains the sequence
number of the last correctly received packet.

5 INITC
Third initialization packet. The YYY field contains the maximum
window size to use.

6 INITB
Second initialization packet. The YYY field contains the packet
size to use. It requests a size of 2 ** (YYY + 5). Note that
this is not the same coding used for the K byte in the packet
header (it is 1 less). Most UUCP implementations that request a
packet size larger than 64 bytes can handle any packet size up to
that specified.

7 INITA
First initialization packet. The YYY field contains the maximum
window size to use.

To compute the checksum, call the control byte (the fifth byte in the
header) C.

The checksum of a control packet is simply 0xaaaa - C.

The checksum of a data packet is 0xaaaa - (CHECK ^ C), where ^
denotes exclusive or, and CHECK is the result of the following routine
as run on the contents of the data field (every byte in the data field
participates in the checksum, even for a short data packet). Below is
the routine used by an early version of Taylor UUCP; it is a slightly
modified version of a routine which John Gilmore patched from G.L.
Chesson’s original paper. The z argument points to the data and the c
argument indicates how much data there is.

uucp.info 132 / 166

int
igchecksum (z, c)

register const char *z;
register int c;

{
register unsigned int ichk1, ichk2;

ichk1 = 0xffff;
ichk2 = 0;

do
{

register unsigned int b;

/* Rotate ichk1 left. */
if ((ichk1 & 0x8000) == 0)

ichk1 <<= 1;
else

{
ichk1 <<= 1;
++ichk1;

}

/* Add the next character to ichk1. */
b = *z++ & 0xff;
ichk1 += b;

/* Add ichk1 xor the character position in the buffer counting from
the back to ichk2. */

ichk2 += ichk1 ^ c;

/* If the character was zero, or adding it to ichk1 caused an
overflow, xor ichk2 to ichk1. */

if (b == 0 || (ichk1 & 0xffff) < b)
ichk1 ^= ichk2;

}
while (--c > 0);

return ichk1 & 0xffff;
}

When the g protocol is started, the calling UUCP sends an INITA
control packet with the window size it wishes the called UUCP to use.
The called UUCP responds with an INITA packet with the window size it
wishes the calling UUCP to use. Pairs of INITB and INITC packets are
then similarly exchanged. When these exchanges are completed, the
protocol is considered to have been started.

Note that the window and packet sizes are not a negotiation. Each
system announces the window and packet size which the other system
should use. It is possible that different window and packet sizes will
be used in each direction. The protocol works this way on the theory
that each system knows how much data it can accept without getting
overrun. Therefore, each system tells the other how much data to send
before waiting for an acknowledgement.

uucp.info 133 / 166

When a UUCP package transmits a command, it sends one or more data
packets. All the data packets will normally be complete, although some
UUCP packages may send the last one as a short packet. The command
string is sent with a trailing null byte, to let the receiving package
know when the command is finished. Some UUCP packages require the last
byte of the last packet sent to be null, even if the command ends
earlier in the packet. Some packages may require all the trailing bytes
in the last packet to be null, but I have not confirmed this.

When a UUCP package sends a file, it will send a sequence of data
packets. The end of the file is signalled by a short data packet
containing zero valid bytes (it will normally be preceeded by a short
data packet containing the last few bytes in the file).

Note that the sequence numbers cover the entire communication
session, including both command and file data.

When the protocol is shut down, each UUCP package sends a CLOSE
control packet.

1.99 uucp.info/f Protocol

UUCP f Protocol
===============

The f protocol is a seven bit protocol which checksums an entire
file at a time. It only uses the characters between \040 and \176
(ASCII space and ~) inclusive, as well as the carriage return
character. It can be very efficient for transferring text only data,
but it is very inefficient at transferring eight bit data (such as
compressed news). It is not flow controlled, and the checksum is
fairly insecure over large files, so using it over a serial connection
requires handshaking (XON/XOFF can be used) and error correcting
modems. Some people think it should not be used even under those
circumstances.

I believe that the f protocol originated in BSD versions of UUCP.
It was originally intended for transmission over X.25 PAD links.

The f protocol has no startup or finish protocol. However, both
sides typically sleep for a couple of seconds before starting up,
because they switch the terminal into XON/XOFF mode and want to allow
the changes to settle before beginning transmission.

When a UUCP package transmits a command, it simply sends a string
terminated by a carriage return.

When a UUCP package transmits a file, each byte B of the file is
translated according to the following table:

0 <= B <= 037: 0172, B + 0100 (0100 to 0137)
040 <= B <= 0171: B (040 to 0171)
0172 <= B <= 0177: 0173, B - 0100 (072 to 077)

uucp.info 134 / 166

0200 <= B <= 0237: 0174, B - 0100 (0100 to 0137)
0240 <= B <= 0371: 0175, B - 0200 (040 to 0171)
0372 <= B <= 0377: 0176, B - 0300 (072 to 077)

That is, a byte between \040 and \171 inclusive is transmitted as
is, and all other bytes are prefixed and modified as shown.

When all the file data is sent, a seven byte sequence is sent: two
bytes of \176 followed by four ASCII bytes of the checksum as printed
in base 16 followed by a carriage return. For example, if the checksum
was 0x1234, this would be sent: \176\1761234\r.

The checksum is initialized to 0xffff. For each byte that is sent
it is modified as follows (where B is the byte before it has been
transformed as described above):

/* Rotate the checksum left. */
if ((ichk & 0x8000) == 0)

ichk <<= 1;
else

{
ichk <<= 1;
++ichk;

}

/* Add the next byte into the checksum. */
ichk += B;

When the receiving UUCP sees the checksum, it compares it against its
own calculated checksum and replies with a single character followed by
a carriage return.

G
The file was received correctly.

R
The checksum did not match, and the file should be resent from the
beginning.

Q
The checksum did not match, but too many retries have occurred and
the communication session should be abandoned.

The sending UUCP checks the returned character and acts accordingly.

1.100 uucp.info/t Protocol

UUCP t Protocol
===============

The t protocol is intended for use on links which provide reliable
end-to-end connections, such as TCP. It does no error checking or flow
control, and requires an eight bit clear channel.

uucp.info 135 / 166

I believe the t protocol originated in BSD versions of UUCP.

When a UUCP package transmits a command, it first gets the length of
the command string, C. It then sends ((C / 512) + 1) * 512 bytes (the
smallest multiple of 512 which can hold C bytes plus a null byte)
consisting of the command string itself followed by trailing null bytes.

When a UUCP package sends a file, it sends it in blocks. Each block
contains at most 1024 bytes of data. Each block consists of four bytes
containing the amount of data in binary (most significant byte first,
the same format as used by the Unix function htonl) followed by that
amount of data. The end of the file is signalled by a block containing
zero bytes of data.

1.101 uucp.info/e Protocol

UUCP e Protocol
===============

The e protocol is similar to the t protocol. It does no flow
control or error checking and is intended for use over networks
providing reliable end-to-end connections, such as TCP.

The e protocol originated in versions of HDB UUCP.

When a UUCP package transmits a command, it simply sends the command
as an ASCII string terminated by a null byte.

When a UUCP package transmits a file, it sends the complete size of
the file as an ASCII decimal number. The ASCII string is padded out to
20 bytes with null bytes (i.e. if the file is 1000 bytes long, it sends
1000\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0). It
then sends the entire file.

1.102 uucp.info/Big G Protocol

UUCP G Protocol
===============

The G protocol is used by SVR4 UUCP. It is identical to the g
protocol, except that it is possible to modify the window and packet
sizes. The SVR4 implementation of the g protocol reportedly is fixed
at a packet size of 64 and a window size of 7. Supposedly SVR4 chose
to implement a new protocol using a new letter to avoid any potential
incompatibilities when using different packet or window sizes.

Most implementations of the g protocol that accept packets larger
than 64 bytes will also accept packets smaller than whatever they
requested in the INITB packet. The SVR4 G implementation is an
exception; it will only accept packets of precisely the size it

uucp.info 136 / 166

requests in the INITB packet.

1.103 uucp.info/i Protocol

UUCP i Protocol
===============

The i protocol was written by Ian Lance Taylor (who also wrote this
manual). It was first used by Taylor UUCP version 1.04.

It is a sliding window packet protocol, like the g protocol, but it
supports bidirectional transfers (i.e., file transfers in both
directions simultaneously). It requires an eight bit clear connection.
Several ideas for the protocol were taken from the paper ‘A
High-Throughput Message Transport System’ by P. Lauder. I don’t know
where the paper was published, but the author’s e-mail address is
piers@cs.su.oz.au. The i protocol does not adopt his main
idea, which is to dispense with windows entirely. This is because some
links still do require flow control and, more importantly, because
using windows sets a limit to the amount of data which the protocol must
be able to resend upon request. To reduce the costs of window
acknowledgements, the protocol uses a large window and only requires an
ack at the halfway point.

Each packet starts with a six byte header, optionally followed by
data bytes with a four byte checksum. There are currently five defined
packet types (DATA, SYNC, ACK, NAK, SPOS, CLOSE) which are described
below. Although any packet type may include data, any data provided
with an ACK, NAK or CLOSE packet is ignored.

Every DATA, SPOS and CLOSE packet has a sequence number. The
sequence numbers are independent for each side. The first packet sent
by each side is always number 1. Each packet is numbered one greater
than the previous packet, modulo 32.

Every packet has a local channel number and a remote channel number.
For all packets at least one channel number is zero. When a UUCP
command is sent to the remote system, it is assigned a non-zero local
channel number. All packets associated with that UUCP command sent by
the local system are given the selected local channel number. All
associated packets sent by the remote system are given the selected
number as the remote channel number. This permits each UUCP command to
be uniquely identified by the channel number on the originating system,
and therefore each UUCP package can associate all file data and UUCP
command responses with the appropriate command. This is a requirement
for bidirectional UUCP transfers.

The protocol maintains a single global file position, which starts
at 0. For each incoming packet, any associated data is considered to
occur at the current file position, and the file position is
incremented by the amount of data contained. The exception is a packet
of type SPOS, which is used to change the file position. The reason for
keeping track of the file position is described below.

uucp.info 137 / 166

The header is as follows:

\007
Every packet begins with ^G.

(PACKET << 3) + LOCCHAN
The five bit packet number combined with the three bit local
channel number. DATA, SPOS and CLOSE packets use the packet
sequence number for the PACKET field. NAK packet types use the
PACKET field for the sequence number to be resent. ACK
and SYNC do not use the PACKET field, and generally leave it set
to 0. Packets which are not associated with a UUCP command from
the local system use a local channel number of 0.

(ACK << 3) + REMCHAN
The five bit packet acknowledgement combined with the three bit
remote channel number. The packet acknowledgement is the number
of the last packet successfully received; it is used by all packet
types. Packets which are not sent in response to a UUCP command
from the remote system use a remote channel number of 0.

(TYPE << 5) + (CALLER << 4) + LEN1
The three bit packet type combined with the one bit packet
direction combined with the upper four bits of the data length.
The packet direction bit is always 1 for packets sent by the
calling UUCP, and 0 for packets sent by the called UUCP. This
prevents confusion caused by echoed packets.

LEN2
The lower eight bits of the data length. The twelve bits of data
length permit packets ranging in size from 0 to 4095 bytes.

CHECK
The exclusive or of the second through fifth bytes of the header.
This provides an additional check that the header is valid.

If the data length is non-zero, the packet is immediately followed by
the specified number of data bytes. The data bytes are followed by a
four byte CRC 32 checksum, with the most significant byte first. The
CRC is calculated over the contents of the data field.

The defined packet types are as follows:

0 DATA
This is a plain data packet.

1 SYNC
SYNC packets are exchanged when the protocol is initialized, and
are described further below. SYNC packets do not carry sequence
numbers (that is, the PACKET field is ignored).

2 ACK
This is an acknowledgement packet. Since DATA packets also carry
packet acknowledgements, ACK packets are only used when one side
has no data to send. ACK packets do not carry sequence numbers.

3 NAK

uucp.info 138 / 166

This is a negative acknowledgement. This is sent when a packet is
received incorrectly, and means that the packet number appearing
in the PACKET field must be resent. NAK packets do not carry
sequence numbers (the PACKET field is already used).

4 SPOS
This packet changes the file position. The packet contains four
bytes of data holding the file position, most significant byte
first. The next packet received will be considered to be at the
named file position.

5 CLOSE
When the protocol is shut down, each side sends a CLOSE packet.
This packet does have a sequence number, which could be used to
ensure that all packets were correctly received (this is not
needed by UUCP, however, which uses the higher level H command
with an HY response).

When the protocol starts up, both systems send a SYNC packet. The
SYNC packet includes at least three bytes of data. The first
two bytes are the maximum packet size the remote system should send,
most significant byte first. The third byte is the window size the
remote system should use. The remote system may send packets of any
size up to the maximum. If there is a fourth byte, it is the number of
channels the remote system may use (this must be between 1 and 7,
inclusive). Additional data bytes may be defined in the future.

The window size is the number of packets that may be sent before a
packet is acknowledged. There is no requirement that every packet be
acknowledged; any acknowledgement is considered to acknowledge all
packets through the number given. In the current implementation, if one
side has no data to send, it sends an ACK when half the window is
received.

Note that the NAK packet corresponds to the unused g protocol SRJ
packet type, rather than to the RJ packet type. When a NAK is
received, only the named packet should be resent, not any subsequent
packets.

Note that if both sides have data to send, but a packet is lost, it
is perfectly reasonable for one side to continue sending packets, all of
which will acknowledge the last packet correctly received, while the
system whose packet was lost will be unable to send a new packet because
the send window will be full. In this circumstance, neither side will
time out and one side of the communication will be effectively shut down
for a while. Therefore, any system with outstanding unacknowledged
packets should arrange to time out and resend a packet even if data is
being received.

Commands are sent as a sequence of data packets with a non-zero local
channel number. The last data packet for a command includes a trailing
null byte (normally a command will fit in a single data packet). Files
are sent as a sequence of data packets ending with one of length zero.

The channel numbers permit a more efficient implementation of the
UUCP file send command. Rather than send the command and then wait for
the SY response before sending the file, the file data is sent

uucp.info 139 / 166

beginning immediately after the S command is sent. If an SN response
is received, the file send is aborted, and a final data packet of
length zero is sent to indicate that the channel number may be reused.
If an SY reponse with a file position indicator is received, the file
send adjusts to the file position; this is why the protocol maintains a
global file position.

Note that the use of channel numbers means that each UUCP system may
send commands and file data simultaneously. Moreover, each UUCP system
may send multiple files at the same time, using the channel number to
disambiguate the data. Sending a file before receiving an
acknowledgement for the previous file helps to eliminate the round trip
delays inherent in other UUCP protocols.

1.104 uucp.info/j Protocol

UUCP j Protocol
===============

The j protocol is a variant of the i protocol. It was also written
by Ian Lance Taylor, and first appeared in Taylor UUCP version 1.04.

The j protocol is a version of the i protocol designed for
communication links which intercept a few characters, such as XON or
XOFF. It is not efficient to use it on a link which intercepts many
characters, such as a seven bit link. The j protocol performs no error
correction or detection; that is presumed to be the responsibility of
the i protocol.

When the j protocol starts up, each system sends a printable ASCII
string indicating which characters it wants to avoid using. The string
begins with the ASCII character ^ (octal 136) and ends with the ASCII
character ~ (octal 176). After sending this string, each system looks
for the corresponding string from the remote system. The strings are
composed of escape sequences: \ooo, where o is an octal digit. For
example, sending the string ^\021\023~ means that the ASCII XON and
XOFF characters should be avoided. The union of the characters
described in both strings (the string which is sent and the string
which is received) is the set of characters which must be avoided in
this conversation. Avoiding a printable ASCII character (octal 040 to
octal 176, inclusive) is not permitted.

After the exchange of characters to avoid, the normal i protocol
start up is done, and the rest of the conversation uses the normal i
protocol. However, each i protocol packet is wrapped to become a j
protocol packet.

Each j protocol packet consists of a seven byte header, followed by
data bytes, followed by index bytes, followed by a one byte trailer.
The packet header looks like this:

^
Every packet begins with the ASCII character ^, octal 136.

uucp.info 140 / 166

HIGH
LOW

These two characters give the total number of bytes in the packet.
Both HIGH and LOW are printable ASCII characters. The length of
the packet is (HIGH - 040) * 0100 + (LOW - 040), where 040 <= HIGH <
0177 and 040 <= LOW < 0140. This permits a length of 6079
bytes, but there is a further restriction on packet size described
below.

=
The ASCII character =, octal 075.

DATA-HIGH
DATA-LOW

These two characters give the total number of data bytes in the
packet. The encoding is as described for HIGH and LOW. The number
of data bytes is the size of the i protocol packet wrapped inside
this j protocol packet.

@
The ASCII character @, octal 100.

The header is followed by the number of data bytes given in
DATA-HIGH and DATA-LOW. These data bytes are the i protocol
packet which is being wrapped in the j protocol packet. However, each
character in the i protocol packet which the j protocol must avoid is
transformed into a printable ASCII character (recall that avoiding a
printable ASCII character is not permitted). Two index bytes are used
for each character which must be transformed.

The index bytes immediately follow the data bytes. The index bytes
are created in pairs. Each pair of index bytes encodes the location of
a character in the i protocol packet which was transformed to become a
printable ASCII character. Each pair of index bytes also encodes the
precise transformation which was performed.

When the sender finds a character which must be avoided, it will
transform it using one or two operations. If the character is 0200 or
greater, it will subtract 0200. If the resulting character is less than
020, or is equal to 0177, it will xor by 020. The result is a printable
ASCII character.

The zero based byte index of the character within the i protocol
packet is determined. This index is turned into a two byte printable
ASCII index, INDEX-HIGH and INDEX-LOW, such that the index is (INDEX-HIGH - 040) ←↩

* 040 + (INDEX-LOW -
040). INDEX-LOW is restricted such that 040 <= INDEX-LOW < 0100.
INDEX-HIGH is not permitted to be 0176, so 040 <= INDEX-HIGH <
0176. INDEX-LOW is then modified to encode the transformation:

* If the character transformation only had to subtract 0200, then
INDEX-LOW is used as is.

* If the character transformation only had to xor by 020, then 040
is added to INDEX-LOW.

* If both operations had to be performed, then 0100 is added to

uucp.info 141 / 166

INDEX-LOW. However, if the value of INDEX-LOW was
initially 077, then adding 0100 would result in 0177, which is not
a printable ASCII character. For that special case, INDEX-HIGH is
set to 0176, and INDEX-LOW is set to the original value of
INDEX-HIGH.

The receiver decodes the index bytes as follows (this is the reverse
of the operations performed by the sender, presented here for additional
clarity):

* The first byte in the index is INDEX-HIGH, and the second is
INDEX-LOW.

* If 040 <= INDEX-HIGH < 0176, the index refers to the data byte at
position (INDEX-HIGH - 040) * 040 + INDEX-LOW % 040.

* If 040 <= INDEX-LOW < 0100, then 0200 must be added to indexed
byte.

* If 0100 <= INDEX-LOW < 0140, then 020 must be xor’ed to the
indexed byte.

* If 0140 <= INDEX-LOW < 0177, then 0200 must be added to the
indexed byte, and 020 must be xor’ed to the indexed byte.

* If INDEX-HIGH == 0176, the index refers to the data byte at
position (INDEX-LOW - 040) * 040 + 037. 0200 must be added to
the indexed byte, and 020 must be xor’ed to the indexed byte.

This means the largest i protocol packet which may be wrapped inside
a j protocol packet is (0175 - 040) * 040 + (077 - 040) == 3007 bytes.

The final character in a j protocol packet, following the index
bytes, is the ASCII character ~ (octal 176).

The motivation behind using an indexing scheme, rather than escape
characters, is to avoid data movement. The sender may simply add a
header and a trailer to the i protocol packet. Once the receiver has
loaded the j protocol packet, it may scan the index bytes, transforming
the data bytes, and then pass the data bytes directly on to the i
protocol routine.

1.105 uucp.info/x Protocol

UUCP x Protocol
===============

The x protocol is used in Europe (and probably elsewhere) with
machines that contain an builtin X.25 card and can send eight bit data
transparently across X.25 circuits, without interference from the X.28
or X.29 layers. The protocol sends packets of 512 bytes, and relies on
a write of zero bytes being read as zero bytes without stopping
communication. It first appeared in the original System V UUCP
implementation.

uucp.info 142 / 166

1.106 uucp.info/y Protocol

UUCP y Protocol
===============

The y protocol was developed by Jorge Cwik for use in FX UUCICO, a
PC uucico program. It is designed for communication lines which handle
error correction and flow control. It requires an eight bit clean
connection. It performs error detection, but not error correction:
when an error is detected, the line is dropped. It is a streaming
protocol, like the f protocol; there are no packet acknowledgements, so
the protocol is efficient over a half-duplex communication line such as
PEP.

Every packet contains a six byte header:

sequence low byte
sequence high byte

A two byte sequence number, in little endian order. The first
sequence number is 0. Since the first packet is always a sync
packet (described below) the sequence number of the first data
packet is always 1. Each system counts sequence numbers
independently.

length low byte
length high byte

A two byte data length, in little endian order. If the high bit
of the sixteen bit field is clear, this is the number of data
bytes which follow the six byte header. If the high bit is set,
there is no data, and the length field is a type of control packet.

checksum low byte
checksum high byte

A two byte checksum, in little endian order. The checksum is
computed over the data bytes. The checksum algorithm is described
below. If there are no data bytes, the checksum is sent as 0.

When the protocol starts up, each side must send a sync packet.
This is a packet with a normal six byte header followed by data. The
sequence number of the sync packet should be 0. Currently at least
four bytes of data must be sent with the sync packet. Additional bytes
should be ignored. They are defined as follows:

version
The version number of the protocol. Currently this must be 1.
Larger numbers should be ignored; it is the responsibility of the
newer version to accommodate the older one.

packet size
The maximum data length to use divided by 256. This is sent as a
single byte. The maximum data length permitted is 32768, which
would be sent as 128. Customarily both systems will use the same
maximum data length, the lower of the two requested.

uucp.info 143 / 166

flags low byte
flags high byte

Two bytes of flags. None are currently defined. These bytes
should be sent as 0, and ignored by the receiver.

A length field with the high bit set is a control packet. The
following control packet types are defined:

0xfffe YPKT_ACK
Acknowledges correct receipt of a file.

0xfffd YPKT_ERR
Indicates an incorrect checksum.

0xfffc YPKT_BAD
Indicates a bad sequence number, an invalid length, or some other
error.

If a control packet other than YPKT_ACK is received, the connection
is dropped. If a checksum error is detected for a received packet, a
YPKT_ERR control packet is sent, and the connection is
dropped. If a packet is received out of sequence, a YPKT_BAD control
packet is sent, and the connection is dropped.

The checksum is initialized to 0xffff. For each data byte in a
packet it is modified as follows (where B is the byte before it has been
transformed as described above):

/* Rotate the checksum left. */
if ((ichk & 0x8000) == 0)

ichk <<= 1;
else

{
ichk <<= 1;
++ichk;

}

/* Add the next byte into the checksum. */
ichk += B;

This is the same algorithm as that used by the f protocol.

A command is sent as a sequence of data packets followed by a null
byte. In the normal case, a command will fit into a single packet.
The packet should be exactly the length of the command plus a null
byte. If the command is too long, more packets are sent as required.

A file is sent as a sequence of data packets, ending with a zero
length packet. The data packets may be of any length greater than zero
and less than or equal to the maximum permitted packet size specified
in the initial sync packet.

After the zero length packet ending a file transfer has been
received, the receiving system sends a YPKT_ACK control packet. The
sending system waits for the YPKT_ACK control packet before continuing;
this wait should be done with a large timeout, since there may be a

uucp.info 144 / 166

considerable amount of data buffered on the communication path.

1.107 uucp.info/d Protocol

UUCP d Protocol
===============

The d protocol is apparently used for DataKit muxhost (not RS-232)
connections. No file size is sent. When a file has been completely
transferred, a write of zero bytes is done; this must be read as zero
bytes on the other end.

1.108 uucp.info/h Protocol

UUCP h Protocol
===============

The h protocol is apparently used in some places with HST modems.
It does no error checking, and is not that different from the t
protocol. I don’t know the details.

1.109 uucp.info/v Protocol

UUCP v Protocol
===============

The v protocol is used by UUPC/extended, a PC UUCP program. It is
simply a version of the g protocol which supports packets of any size,
and also supports sending packets of different sizes during the same
conversation. There are many g protocol implementations which support
both, but there are also many which do not. Using v ensures that
everything is supported.

1.110 uucp.info/Hacking

Hacking Taylor UUCP

This chapter provides the briefest of guides to the Taylor UUCP
source code itself.

uucp.info 145 / 166

System Dependence
System Dependence

Naming Conventions
Naming Conventions

Patches
Patches

1.111 uucp.info/System Dependence

System Dependence
=================

The code is carefully segregated into a system independent portion
and a system dependent portion. The system dependent code is in the
unix subdirectory, and also in the file sysh.unx (also known
as sysdep.h).

With the right configuration parameters, the system independent code
calls only ANSI C functions. Some of the less common ANSI C functions
are also provided in the lib directory. The replacement function
strtol in lib/strtol.c assumes that the characters A to F and
a to f appear in strictly sequential order. The function
igradecmp in uuconf/grdcmp.c assumes that the upper and lower
case letters appear in order. Both assumptions are true for ASCII and
EBCDIC, but neither is guaranteed by ANSI C. Disregarding these
caveats, I believe that the system independent portion of the code is
strictly conforming.

That’s not too exciting, since all the work is done in the system
dependent code. I think that this code can conform to POSIX 1003.1,
given the right compilation parameters. I’m a bit less certain about
this, though.

The code has been used on a 16 bit segmented system with no function
prototypes, so I’m fairly certain that all casts to long and pointers
are done when necessary.

1.112 uucp.info/Naming Conventions

Naming Conventions
==================

I use a modified Hungarian naming convention for my variables and
functions. As with all naming conventions, the code is rather opaque if
you are not familiar with it, but becomes clear and easy to use with
time.

uucp.info 146 / 166

The first character indicates the type of the variable (or function
return value). Sometimes additional characters are used. I use the
following type prefixes:

a
array; the next character is the type of an element

b
byte or character

c
count of something

e
stdio FILE *

f
boolean

i
generic integer

l
double

o
file descriptor (as returned by open, creat, etc.)

p
generic pointer

q
pointer to structure

s
structure

u
void (function return values only)

z
character string

A generic pointer (p) is sometimes a void *, sometimes a function
pointer in which case the prefix is pf, and sometimes a pointer to
another type, in which case the next character is the type to which it
points (pf is overloaded).

An array of strings (char *[]) would be named az (array of string).
If this array were passed to a function, the function parameter would
be named paz (pointer to array of string).

Note that the variable name prefixes do not necessarily indicate the
type of the variable. For example, a variable prefixed with i may be
int, long or short. Similarly, a variable prefixed with b may be a
char or an int; for example, the return value of getchar would be
caught in an int variable prefixed with b.

uucp.info 147 / 166

For a non-local variable (extern or file static), the first character
after the type prefix is capitalized.

Most static variables and functions use another letter after the type
prefix to indicate which module they come from. This is to help
distinguish different names in the debugger. For example, all static
functions in protg.c, the g protocol source code, use a module prefix
of g. This isn’t too useful, as a number of modules use a module
prefix of s.

1.113 uucp.info/Patches

Patches
=======

I am always grateful for any patches sent in. Much of the
flexibility and portability of the code is due to other people. Please
do not hesitate to send me any changes you have found necessary or
useful.

When sending a patch, please send the output of the Unix diff
program invoked with the -c option (if you have the GNU version of
diff, use the -p option). Always invoke diff with the
original file first and the modified file second.

If your diff does not support -c (or you don’t have diff), send a
complete copy of the modified file (if you have just changed a single
function, you can just send the new version of the function). In
particular, please do not send diff output without the -c option, as it
is useless.

If you have made a number of changes, it is very convenient for me if
you send each change as a separate mail message. Sometimes I will think
that one change is useful but another one is not. If they are in
different messages it is much easier for me to apply one but not the
other.

I rarely apply the patches directly. Instead I work my way through
the hunks and apply each one separately. This ensures that the naming
remains consistent, and that I understand all the code.

If you can not follow all these rules, then don’t. But if you do, it
makes it more likely that I will incorporate your changes. I am not
paid for my UUCP work, and my available time is unfortunately very
restricted. The package is important to me, and I do what I can, but I
can not do all that I would like, much less all that everybody else
would like.

Finally, please do not be offended if I do not reply to messages for
some time, even a few weeks. I am often behind on my mail, and if I
think your message deserves a considered reply I will often put it aside
until I have time to deal with it.

uucp.info 148 / 166

1.114 uucp.info/Acknowledgements

Acknowledgements

This is a list of people who gave help or suggestions while I was
working on the Taylor UUCP project. Appearance on this list does not
constitute endorsement of the program, particularly since some of the
comments were criticisms. I’ve probably left some people off, and I
apologize for any oversight; it does not mean your contribution was
unappreciated.

First of all, I would like to thank the people at Infinity
Development Systems (formerly AIRS, which lives on in the domain name)
for permitting me to use their computers and uunet access. I would
also like to thank Richard Stallman <rms@gnu.ai.mit.edu> for founding
the Free Software Foundation, and John Gilmore <gnu@cygnus.com> for
writing the initial version of gnuucp which was a direct inspiration
for this somewhat larger project. Chip Salzenberg <chip@tct.com> has
contributed many patches. Franc,ois Pinard <pinard@iro.umontreal.ca>
tirelessly tested the code and suggested many improvements. He also
put together the initial version of this manual. Doug Evans
contributed the zmodem protocol. Marc Boucher <marc@CAM.ORG>
contributed the code supporting the pipe port type. Jorge Cwik
jorge@laser.satlink.net contributed the y protocol code.
Finally, Verbus M. Counts <verbus@westmark.com> and Centel Federal
Systems, Inc., deserve special thanks, since they actually paid me
money to port this code to System III.

In alphabetical order:

"Earle F. Ake - SAIC" <ake@Dayton.SAIC.COM>
mra@searchtech.com (Michael Almond)
cambler@zeus.calpoly.edu (Christopher J. Ambler)
Brian W. Antoine <briana@tau-ceti.isc-br.com>
jantypas@soft21.s21.com (John Antypas)
james@bigtex.cactus.org (James Van Artsdalen)
jima@netcom.com (Jim Avera)
nba@sysware.DK (Niels Baggesen)
uunet!hotmomma!sdb (Scott Ballantyne)
Zacharias Beckman <zac@dolphin.com>
mike@mbsun.ann-arbor.mi.us (Mike Bernson)
bob@usixth.sublink.org (Roberto Biancardi)
statsci!scott@coco.ms.washington.edu (Scott Blachowicz)
bag%wood2.cs.kiev.ua@relay.ussr.eu.net (Andrey G Blochintsev)
spider@Orb.Nashua.NH.US (Spider Boardman)
Gregory Bond <gnb@bby.com.au>
Marc Boucher <marc@CAM.ORG>
Ard van Breemen <ard@cstmel.hobby.nl>
dean@coplex.com (Dean Brooks)
jbrow@radical.com (Jim Brownfield)
dave@dlb.com (Dave Buck)
gordon@sneaky.lonestar.org (Gordon Burditt)

uucp.info 149 / 166

dburr@sbphy.physics.ucsb.edu (Donald Burr)
mib@gnu.ai.mit.edu (Michael I Bushnell)
Brian Campbell <brianc@quantum.on.ca>
Andrew A. Chernov <ache@astral.msk.su>
jhc@iscp.bellcore.com (Jonathan Clark)
mafc!frank@bach.helios.de (Frank Conrad)
Ed Carp <erc@apple.com>
mpc@mbs.linet.org (Mark Clements)
verbus@westmark.westmark.com (Verbus M. Counts)
cbmvax!snark.thyrsus.com!cowan (John Cowan)
Bob Cunningham <bob@soest.hawaii.edu>
jorge@laser.satlink.net (Jorge Cwik)
kdburg@incoahe.hanse.de (Klaus Dahlenburg)
Damon <d@exnet.co.uk>
celit!billd@UCSD.EDU (Bill Davidson)
hubert@arakis.fdn.org (Hubert Delahaye)
markd@bushwire.apana.org.au (Mark Delany)
Allen Delaney <allen@brc.ubc.ca>
Gerriet M. Denkmann gerriet@hazel.north.de
denny@dakota.alisa.com (Bob Denny)
Drew Derbyshire <ahd@kew.com>
ssd@nevets.oau.org (Steven S. Dick)
gert@greenie.gold.sub.org (Gert Doering)
gemini@geminix.in-berlin.de (Uwe Doering)
Hans-Dieter Doll <hd2@Insel.DE>
deane@deane.teleride.on.ca (Dean Edmonds)
Mark W. Eichin <eichin@cygnus.com>
erik@pdnfido.fidonet.org
Andrew Evans <andrew@airs.com>
dje@cygnus.com (Doug Evans)
Marc Evans <marc@synergytics.com>
Dan Everhart <dan@dyndata.com>
kksys!kegworks!lfahnoe@cs.umn.edu (Larry Fahnoe)
Matthew Farwell <dylan@ibmpcug.co.uk>
fenner@jazz.psu.edu (Bill Fenner)
jaf@inference.com (Jose A. Fernandez)
"David J. Fiander" <golem!david@news.lsuc.on.ca>
Thomas Fischer <batman@olorin.dark.sub.org>
Mister Flash <flash@sam.imash.ras.ru>
louis@marco.de (Ju"rgen Fluk)
erik@eab.retix.com (Erik Forsberg)
andy@scp.caltech.edu (Andy Fyfe)
Lele Gaifax <piggy@idea.sublink.org>
Peter.Galbavy@micromuse.co.uk
hunter@phoenix.pub.uu.oz.au (James Gardiner [hunter])
Terry Gardner <cphpcom!tjg01>
dgilbert@gamiga.guelphnet.dweomer.org (David Gilbert)
ol@infopro.spb.su (Oleg Girko)
jimmy@tokyo07.info.com (Jim Gottlieb)
Benoit Grange <ben@fizz.fdn.org>
elg@elgamy.jpunix.com (Eric Lee Green)
ryan@cs.umb.edu (Daniel R. Guilderson)
greg@gagme.chi.il.us (Gregory Gulik)
Richard H. Gumpertz <rhg@cps.com>
Scott Guthridge <scooter@cube.rain.com>
Michael Haberler <mah@parrot.prv.univie.ac.at>
Daniel Hagerty <hag@eddie.mit.edu>

uucp.info 150 / 166

jh@moon.nbn.com (John Harkin)
guy@auspex.auspex.com (Guy Harris)
hsw1@papa.attmail.com (Stephen Harris)
Petri Helenius <pete@fidata.fi>
gabe@edi.com (B. Gabriel Helou)
Bob Hemedinger <bob@dalek.mwc.com>
Andrew Herbert <andrew@werple.pub.uu.oz.au>
kherron@ms.uky.edu (Kenneth Herron)
Peter Honeyman <honey@citi.umich.edu>
jhood@smoke.marlboro.vt.us (John Hood)
Mike Ipatow <mip@fido.itc.e-burg.su>
Bill Irwin <bill@twg.bc.ca>
pmcgw!personal-media.co.jp!ishikawa (Chiaki Ishikawa)
ai@easy.in-chemnitz.de (Andreas Israel)
iverson@lionheart.com (Tim Iverson)
bei@dogface.austin.tx.us (Bob Izenberg)
djamiga!djjames@fsd.com (D.J.James)
Rob Janssen <cmgit!rob@relay.nluug.nl>
harvee!esj (Eric S Johansson)
Kevin Johnson <kjj@pondscum.phx.mcd.mot.com>
rj@rainbow.in-berlin.de (Robert Joop)
Alan Judge <aj@dec4ie.IEunet.ie>
chris@cj_net.in-berlin.de (Christof Junge)
Romain Kang <romain@pyramid.com>
tron@Veritas.COM (Ronald S. Karr)
Brendan Kehoe <brendan@cs.widener.edu>
warlock@csuchico.edu (John Kennedy)
kersing@nlmug.nl.mugnet.org (Jac Kersing)
ok@daveg.PFM-Mainz.de (Olaf Kirch)
Gabor Kiss <kissg@sztaki.hu>
gero@gkminix.han.de (Gero Kuhlmann)
rob@pact.nl (Rob Kurver)
"C.A. Lademann" <cal@zls.gtn.com>
kent@sparky.IMD.Sterling.COM (Kent Landfield)
Tin Le <tin@saigon.com>
lebaron@inrs-telecom.uquebec.ca (Gregory LeBaron)
karl@sugar.NeoSoft.Com (Karl Lehenbauer)
alex@hal.rhein-main.de (Alexander Lehmann)
merlyn@digibd.com (Merlyn LeRoy)
clewis@ferret.ocunix.on.ca (Chris Lewis)
gdonl@ssi1.com (Don Lewis)
libove@libove.det.dec.com (Jay Vassos-Libove)
bruce%blilly@Broadcast.Sony.COM (Bruce Lilly)
Godfrey van der Linden <Godfrey_van_der_Linden@NeXT.COM>
Ted Lindgreen <tlindgreen@encore.nl>
andrew@cubetech.com (Andrew Loewenstern)
"Arne Ludwig" <arne@rrzbu.hanse.de>
Matthew Lyle <matt@mips.mitek.com>
djm@eng.umd.edu (David J. MacKenzie)
John R MacMillan <chance!john@sq.sq.com>
jum@helios.de (Jens-Uwe Mager)
Giles D Malet <shrdlu!gdm@provar.kwnet.on.ca>
mem@mv.MV.COM (Mark E. Mallett)
pepe@dit.upm.es (Jose A. Manas)
peter@xpoint.ruessel.sub.org (Peter Mandrella)
martelli@cadlab.sublink.org (Alex Martelli)
W Christopher Martin <wcm@geek.ca.geac.com>

uucp.info 151 / 166

Yanek Martinson <yanek@mthvax.cs.miami.edu>
thomasm@mechti.wupper.de (Thomas Mechtersheimer)
jm@aristote.univ-paris8.fr (Jean Mehat)
me@halfab.freiburg.sub.org (Udo Meyer)
les@chinet.chi.il.us (Leslie Mikesell)
bug@cyberdex.cuug.ab.ca (Trever Miller)
mmitchel@digi.lonestar.org (Mitch Mitchell)
Emmanuel Mogenet <mgix@krainte.jpn.thomson-di.fr>
rmohr@infoac.rmi.de (Rupert Mohr)
Jason Molenda <molenda@sequent.com>
ianm@icsbelf.co.uk (Ian Moran)
jmorriso@bogomips.ee.ubc.ca (John Paul Morrison)
brian@ilinx.wimsey.bc.ca (Brian J. Murrell)
service@infohh.rmi.de (Dirk Musstopf)
lyndon@cs.athabascau.ca (Lyndon Nerenberg)
rolf@saans.north.de (Rolf Nerstheimer)
tom@smart.bo.open.de (Thomas Neumann)
mnichols@pacesetter.com
Richard E. Nickle <trystro!rick@Think.COM>
stephan@sunlab.ka.sub.org (Stephan Niemz)
nolan@helios.unl.edu (Michael Nolan)
david nugent <david@csource.oz.au>
Jim O’Connor <jim@bahamut.fsc.com>
kevin%kosman.uucp@nrc.com (Kevin O’Gorman)
Petri Ojala <ojala@funet.fi>
oneill@cs.ulowell.edu (Brian ’Doc’ O’Neill)
Stephen.Page@prg.oxford.ac.uk
abekas!dragoman!mikep@decwrl.dec.com (Mike Park)
Tim Peiffer peiffer@cs.umn.edu
don@blkhole.resun.com (Don Phillips)
"Mark Pizzolato 415-369-9366" <mark@infocomm.com>
John Plate <plate@infotek.dk>
dplatt@ntg.com (Dave Platt)
eldorado@tharr.UUCP (Mark Powell)
Mark Powell <mark@inet-uk.co.uk>
pozar@kumr.lns.com (Tim Pozar)
joey@tessi.UUCP (Joey Pruett)
Paul Pryor ptp@fallschurch-acirs2.army.mil
putsch@uicc.com (Jeff Putsch)
ar@nvmr.robin.de (Andreas Raab)
Jarmo Raiha <jarmo@ksvltd.FI>
James Revell <revell@uunet.uu.net>
Scott Reynolds <scott@clmqt.marquette.Mi.US>
mcr@Sandelman.OCUnix.On.Ca (Michael Richardson)
Kenji Rikitake <kenji@rcac.astem.or.jp>
arnold@cc.gatech.edu (Arnold Robbins)
steve@Nyongwa.cam.org (Steve M. Robbins)
Ollivier Robert <Ollivier.Robert@keltia.frmug.fr.net>
Serge Robyns <sr@denkart.be>
Lawrence E. Rosenman <ler@lerami.lerctr.org>
Jeff Ross <jeff@wisdom.bubble.org>
Aleksey P. Rudnev <alex@kiae.su>
"Heiko W.Rupp" <hwr@pilhuhn.ka.sub.org>
wolfgang@wsrcc.com (Wolfgang S. Rupprecht)
tbr@tfic.bc.ca (Tom Rushworth)
jsacco@ssl.com (Joseph E. Sacco)
rsalz@bbn.com (Rich Salz)

uucp.info 152 / 166

Curt Sampson <curt@portal.ca>
sojurn!mike@hobbes.cert.sei.cmu.edu (Mike Sangrey)
Nickolay Saukh <nms@ussr.EU.net>
heiko@lotte.sax.de (Heiko Schlittermann)
Eric Schnoebelen <eric@cirr.com>
russell@alpha3.ersys.edmonton.ab.ca (Russell Schulz)
scott@geom.umn.edu
Igor V. Semenyuk <iga@argrd0.argonaut.su>
Christopher Sawtell <chris@gerty.equinox.gen.nz>
schuler@bds.sub.org (Bernd Schuler)
uunet!gold.sub.org!root (Christian Seyb)
s4mjs!mjs@nirvo.nirvonics.com (M. J. Shannon Jr.)
shields@tembel.org (Michael Shields)
peter@ficc.ferranti.com (Peter da Silva)
vince@victrola.sea.wa.us (Vince Skahan)
frumious!pat (Patrick Smith)
roscom!monty@bu.edu (Monty Solomon)
sommerfeld@orchard.medford.ma.us (Bill Sommerfeld)
Julian Stacey <stacey@guug.de>
evesg@etlrips.etl.go.jp (Gjoen Stein)
Harlan Stenn <harlan@mumps.pfcs.com>
Ralf Stephan <ralf@ark.abg.sub.org>
johannes@titan.westfalen.de (Johannes Stille)
chs@antic.apu.fi (Hannu Strang)
ralf@reswi.ruhr.de (Ralf E. Stranzenbach)
sullivan@Mathcom.com (S. Sullivan)
Shigeya Suzuki <shigeya@dink.foretune.co.jp>
kls@ditka.Chicago.COM (Karl Swartz)
swiers@plains.NoDak.edu
Oleg Tabarovsky <olg@olghome.pccentre.msk.su>
ikeda@honey.misystems.co.jp (Takatoshi Ikeda)
John Theus <john@theus.rain.com>
rd@aii.com (Bob Thrush)
ppKarsten Thygesen <karthy@dannug.dk>
Graham Toal <gtoal@pizzabox.demon.co.uk>
rmtodd@servalan.servalan.com (Richard Todd)
Martin Tomes <mt00@controls.eurotherm.co.uk>
Len Tower <tower-prep@ai.mit.edu>
Mark Towfiq <justice!towfiq@Eingedi.Newton.MA.US>
mju@mudos.ann-arbor.mi.us (Marc Unangst)
Matthias Urlichs <urlichs@smurf.noris.de>
Tomi Vainio <tomppa@fidata.fi>
a3@a3.xs4all.nl (Adri Verhoef)
Andrew Vignaux <ajv@ferrari.datamark.co.nz>
vogel@omega.ssw.de (Andreas Vogel)
Dima Volodin <dvv@hq.demos.su>
jos@bull.nl (Jos Vos)
jv@nl.net (Johan Vromans)
David Vrona <dave@sashimi.wwa.com>
Marcel.Waldvogel@nice.usergroup.ethz.ch (Marcel Waldvogel)
steve@nshore.org (Stephen J. Walick)
syd@dsinc.dsi.com (Syd Weinstein)
gerben@rna.indiv.nluug.nl (Gerben Wierda)
jbw@cs.bu.edu (Joe Wells)
frnkmth!twwells.com!bill (T. William Wells)
Peter Wemm <Peter_Wemm@zeus.dialix.oz.au>
mauxci!eci386!woods@apple.com (Greg A. Woods)

uucp.info 153 / 166

John.Woods@proteon.com (John Woods)
Michael Yu.Yaroslavtsev <mike@yaranga.ipmce.su>
Alexei K. Yushin <root@july.elis.crimea.ua>
jon@console.ais.org (Jon Zeeff)
Matthias Zepf <agnus@amylnd.stgt.sub.org>
Eric Ziegast <uunet!ziegast>

1.115 uucp.info/Index (concepts)

Concept Index

.Corrupt
Execution Subdirectories

.Failed
Execution Subdirectories

.Preserve
Other Spool Subdirectories

.Received
Other Spool Subdirectories

.Sequence
Other Spool Subdirectories

.Status
Status Directory

.Temp
Other Spool Subdirectories

.Xqtdir
Execution Subdirectories

/usr/spool/uucp
Miscellaneous (config)

/usr/spool/uucppublic
Miscellaneous (config)

accepting calls
Accepting Calls

anonymous UUCP
config File Examples

call configuration file
Configuration File Names

call in login name
Configuration File Names

uucp.info 154 / 166

call in password
Configuration File Names

call out file
Configuration File Names

call out login name
Configuration File Names

call out password
Configuration File Names

calling in
Accepting Calls

calling out
Calling Other Systems

changing spool directory
config File Examples

chat scripts
Chat Scripts

cleaning the spool directory
Spool Directory Cleaning

config file
config File

config file examples
config File Examples

configuration file (call)
Configuration File Names

configuration file (config)
config File

configuration file (dial)
dial File

configuration file (dialcode)
Configuration File Names

configuration file (passwd)
Configuration File Names

configuration file (port)
port File

configuration file (sys)
sys File

d protocol
d Protocol

uucp.info 155 / 166

debugging file
Log File Names

dial file
dial File

dialcode configuration file
Configuration File Names

dialcode file
Configuration File Names

dialer configuration file
dial File

e protocol
e Protocol

E UUCP protocol command
The E Command

execution file format
Execution File Format

f protocol
f Protocol

final handshake
The Final Handshake

G protocol
Big G Protocol

g protocol
g Protocol

gateway
Gateway Example

grades
When to Call

grades implementation
UUCP Grades

h protocol
h Protocol

H UUCP protocol command
The H Command

i protocol
i Protocol

initial handshake
The Initial Handshake

uucp.info 156 / 166

j protocol
j Protocol

L.XXX
Spool Lock Files

LCK..SYS
Spool Lock Files

LCK.XQT.NN
Spool Lock Files

leaf site
Leaf Example

lock directory
Miscellaneous (config)

lock files
UUCP Lock Files

lock files in spool directory
Spool Lock Files

log file
Log File Names

LXQ.CMD
Spool Lock Files

mail
Mail and News

main configuration file
config File

news
Mail and News

parity in login names
Miscellaneous (config)

passwd configuration file
Configuration File Names

passwd file
Configuration File Names

port configuration file
port File

port file
port File

protocol d
d Protocol

uucp.info 157 / 166

protocol e
e Protocol

protocol f
f Protocol

protocol g
g Protocol

protocol G
Big G Protocol

protocol h
h Protocol

protocol i
i Protocol

protocol j
j Protocol

protocol t
t Protocol

protocol v
v Protocol

protocol x
x Protocol

protocol y
y Protocol

protocol, UUCP
UUCP Protocol

public directory
Miscellaneous (config)

R UUCP protocol command
The R Command

S UUCP protocol command
The S Command

spool directory
The Spool Directory Layout

spool directory, changing
config File Examples

spool directory, cleaning
Spool Directory Cleaning

spool directory, setting
Miscellaneous (config)

uucp.info 158 / 166

statistics file
Log File Names

status files
Status Directory

sys file
sys File

sys file example (gateway)
Gateway Example

sys file example (leaf)
Leaf Example

system configuration file
sys File

system lock files
Spool Lock Files

system name
Miscellaneous (config)

system spool directories
System Spool Directories

t protocol
t Protocol

time strings
Time Strings

unknown systems
Miscellaneous (config)

UUCP protocol
UUCP Protocol

UUCP protocol E command
The E Command

UUCP protocol H command
The H Command

UUCP protocol R command
The R Command

UUCP protocol S command
The S Command

UUCP protocol X command
The X Command

UUCP system name
Miscellaneous (config)

uucp.info 159 / 166

uucppublic
Miscellaneous (config)

v protocol
v Protocol

x protocol
x Protocol

X UUCP protocol command
The X Command

X.* file format
Execution File Format

y protocol
y Protocol

1.116 uucp.info/Index (configuration file)

Configuration File Index

abort
dial File

abort-chat
dial File

abort-chat-fail
dial File

abort-chat-program
dial File

abort-chat-seven-bit
dial File

abort-chat-timeout
dial File

address
Placing the Call

alias
Naming the System

alternate
Naming the System

uucp.info 160 / 166

baud in port file
port File

baud in sys file
Placing the Call

baud-range
port File

call-local-size
File Transfer Control

call-login
Logging In

call-password
Logging In

call-remote-size
File Transfer Control

call-timegrade
When to Call

call-transfer
File Transfer Control

callback
Accepting a Call

called-chat
Accepting a Call

called-chat-fail
Accepting a Call

called-chat-program
Accepting a Call

called-chat-seven-bit
Accepting a Call

called-chat-timeout
Accepting a Call

called-local-size
File Transfer Control

called-login
Accepting a Call

called-remote-size
File Transfer Control

called-timegrade
When to Call

uucp.info 161 / 166

called-transfer
File Transfer Control

callfile
Configuration File Names

carrier in dial file
dial File

carrier in port file
port File

carrier-wait
dial File

chat
Chat Scripts

chat in dial file
dial File

chat in sys file
Logging In

chat-fail
Chat Scripts

chat-fail in dial file
dial File

chat-fail in sys file
Logging In

chat-program
Chat Scripts

chat-program in dial file
dial File

chat-program in sys file
Logging In

chat-seven-bit
Chat Scripts

chat-seven-bit in dial file
dial File

chat-seven-bit in sys file
Logging In

chat-timeout
Chat Scripts

chat-timeout in dial file
dial File

uucp.info 162 / 166

chat-timeout in sys file
Logging In

command
port File

command-path
Miscellaneous (sys)

commands
Miscellaneous (sys)

complete
dial File

complete-chat
dial File

complete-chat-fail
dial File

complete-chat-program
dial File

complete-chat-seven-bit
dial File

complete-chat-timeout
dial File

debug in config file
Debugging Levels

debug in sys file
Miscellaneous (sys)

debugfile
Log File Names

default-alternates
Naming the System

device
port File

dial-device
port File

dialcodefile
Configuration File Names

dialer in dial file
dial File

dialer in port file
port File

uucp.info 163 / 166

dialer-sequence
port File

dialfile
Configuration File Names

dialtone
dial File

dtr-toggle
dial File

forward
File Transfer Control

forward-from
File Transfer Control

forward-to
File Transfer Control

free-space
Miscellaneous (sys)

half-duplex in dial file
dial File

half-duplex in port file
port File

hardflow
port File

hdb-files
Miscellaneous (config)

hostname
Miscellaneous (config)

local-receive
File Transfer Control

local-send
File Transfer Control

lockdir
Miscellaneous (config)

lockname
port File

logfile
Log File Names

max-remote-debug
Miscellaneous (sys)

uucp.info 164 / 166

max-retries
When to Call

max-uuxqts
Miscellaneous (config)

myname
Naming the System

nodename
Miscellaneous (config)

passwdfile
Configuration File Names

pause
dial File

phone
Placing the Call

port in port file
port File

port in sys file
Placing the Call

portfile
Configuration File Names

protocol in port file
port File

protocol in sys file
Protocol Selection

protocol-parameter in dial file
dial File

protocol-parameter in port file
port File

protocol-parameter in sys file
Protocol Selection

pubdir in config file
Miscellaneous (config)

pubdir in sys file
Miscellaneous (sys)

push
port File

receive-request
File Transfer Control

uucp.info 165 / 166

reliable in dial file
dial File

reliable in port file
port File

remote-receive
File Transfer Control

remote-send
File Transfer Control

request
File Transfer Control

run-uuxqt
Miscellaneous (config)

send-request
File Transfer Control

sequence
Miscellaneous (sys)

server-address
port File

service
port File

seven-bit in dial file
dial File

seven-bit in port file
port File

speed in port file
port File

speed in sys file
Placing the Call

speed-range
port File

spool
Miscellaneous (config)

statfile
Log File Names

stream
port File

strip-login
Miscellaneous (config)

uucp.info 166 / 166

strip-proto
Miscellaneous (config)

sysfile
Configuration File Names

system
Naming the System

time
When to Call

timegrade
When to Call

timetable
Miscellaneous (config)

transfer
File Transfer Control

type
port File

unknown
Miscellaneous (config)

uuname
Miscellaneous (config)

v2-files
Miscellaneous (config)

	uucp.info
	uucp.info
	uucp.info/Copying
	uucp.info/Introduction
	uucp.info/Invoking the UUCP Programs
	uucp.info/Standard Options
	uucp.info/Invoking uucp
	uucp.info/uucp Description
	uucp.info/uucp Options
	uucp.info/Invoking uux
	uucp.info/uux Description
	uucp.info/uux Options
	uucp.info/uux Examples
	uucp.info/Invoking uustat
	uucp.info/uustat Description
	uucp.info/uustat Options
	uucp.info/uustat Examples
	uucp.info/Invoking uuname
	uucp.info/Invoking uulog
	uucp.info/Invoking uuto
	uucp.info/Invoking uupick
	uucp.info/Invoking cu
	uucp.info/cu Description
	uucp.info/cu Commands
	uucp.info/cu Variables
	uucp.info/cu Options
	uucp.info/Invoking uucico
	uucp.info/uucico Description
	uucp.info/uucico Options
	uucp.info/Invoking uuxqt
	uucp.info/Invoking uuchk
	uucp.info/Invoking uuconv
	uucp.info/Invoking uusched
	uucp.info/Installing Taylor UUCP
	uucp.info/Compilation
	uucp.info/Testing the Compilation
	uucp.info/Installing the Binaries
	uucp.info/Configuration
	uucp.info/Testing the Installation
	uucp.info/Using Taylor UUCP
	uucp.info/Calling Other Systems
	uucp.info/Accepting Calls
	uucp.info/Mail and News
	uucp.info/Sending mail or news
	uucp.info/Receiving mail or news
	uucp.info/The Spool Directory Layout
	uucp.info/System Spool Directories
	uucp.info/Status Directory
	uucp.info/Execution Subdirectories
	uucp.info/Other Spool Subdirectories
	uucp.info/Spool Lock Files
	uucp.info/Spool Directory Cleaning
	uucp.info/Configuration Files
	uucp.info/Configuration Overview
	uucp.info/Configuration File Format
	uucp.info/Configuration Examples
	uucp.info/config File Examples
	uucp.info/Leaf Example
	uucp.info/Gateway Example
	uucp.info/Time Strings
	uucp.info/Chat Scripts
	uucp.info/config File
	uucp.info/Miscellaneous (config)
	uucp.info/Configuration File Names
	uucp.info/Log File Names
	uucp.info/Debugging Levels
	uucp.info/sys File
	uucp.info/Defaults and Alternates
	uucp.info/Naming the System
	uucp.info/Calling Out
	uucp.info/When to Call
	uucp.info/Placing the Call
	uucp.info/Logging In
	uucp.info/Accepting a Call
	uucp.info/Protocol Selection
	uucp.info/File Transfer Control
	uucp.info/Miscellaneous (sys)
	uucp.info/Default sys File Values
	uucp.info/port File
	uucp.info/dial File
	uucp.info/UUCP Over TCP
	uucp.info/TCP Client
	uucp.info/TCP Server
	uucp.info/Security
	uucp.info/Protocols
	uucp.info/UUCP Protocol Sources
	uucp.info/UUCP Grades
	uucp.info/UUCP Lock Files
	uucp.info/Execution File Format
	uucp.info/UUCP Protocol
	uucp.info/The Initial Handshake
	uucp.info/UUCP Protocol Commands
	uucp.info/The S Command
	uucp.info/The R Command
	uucp.info/The X Command
	uucp.info/The E Command
	uucp.info/The H Command
	uucp.info/The Final Handshake
	uucp.info/g Protocol
	uucp.info/f Protocol
	uucp.info/t Protocol
	uucp.info/e Protocol
	uucp.info/Big G Protocol
	uucp.info/i Protocol
	uucp.info/j Protocol
	uucp.info/x Protocol
	uucp.info/y Protocol
	uucp.info/d Protocol
	uucp.info/h Protocol
	uucp.info/v Protocol
	uucp.info/Hacking
	uucp.info/System Dependence
	uucp.info/Naming Conventions
	uucp.info/Patches
	uucp.info/Acknowledgements
	uucp.info/Index (concepts)
	uucp.info/Index (configuration file)

